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APPENDIX A1

 2

DEFINITIONS OF TERMS RELEVANT TO PRA 3

AND REFERENCES FOR FURTHER READING4

5
DEFINITIONS OF TERMS6

7
This guidance adopts the definitions of variability, uncertainty, and Monte Carlo simulation found in8

EPA’s  Guiding Principles for Monte Carlo Analysis (1997a).  Definitions for the specialized terms9
pertaining to probabilistic analysis are presented in this appendix.  Note that if a definition uses a term that10
is defined elsewhere in the same list of definitions, it is highlighted in bold text.  Definitions are also presented11
at the beginning of each chapter, sometimes with additional terms and examples that are relevant to concepts12
presented in the chapter.13

14
15

Definitions of Terms Used in PRA16
50th percentile17 The number in a distribution such that half the values in the distribution are greater than the number

and half the values are less.  The 50th percentile is equivalent to the median.

95th percentile 18 The number in a distribution such that 95% of the values in the distribution are less than or equal to
the number and 5% are greater.

95 % Upper19
Confidence Limit for20
a Mean21

The 95 percent upper confidence limit (95% UCL) for a mean is defined as a value that, when
repeatedly calculated for randomly drawn subsets of size n, equals or exceeds the true population
mean 95 percent of the time.  Although the 95% UCL provides a conservative estimate of the mean,
it should not be confused with a 95th  percentile.  As sample size increases, the difference between
the UCL for the mean and the true mean decreases, while the 95th percentile of the distribution remains
relatively unchanged, at the upper end of the distribution.  EPA’s Superfund program has traditionally
used the 95% UCL for the mean as the concentration term in point estimates of RME for human
health risk assessment (U.S. EPA, 1992; 1997b).

ARARs22 Applicable or relevant and appropriate requirements.  The NCP states that ARARs shall be
considered in determining remediation goals.  If an ARAR meets the requirements of the NCP (U.S.
EPA, 1990) for protectiveness, it may be selected as a site-specific cleanup level.

Assessment Endpoint23
24

A term usually associated with ecological risk assessment; a specific expression of the population or
ecosystem value that is to be protected.  It can be characterized both qualitatively and quantitatively
in the risk assessment.

Backcalculation25 A method of calculating a PRG that involves algebraic rearrangement of the risk equation to solve for
concentration as a function of risk.
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Background Exposure1
2

Exposures that are not related to the site.  For example, exposure to chemicals at a different time or
from locations other than the exposure unit of concern.  Background sources may be either naturally
occurring or anthropogenic (man-made).

Bayesian Analysis3 Statistical analysis that describes the probability of an event as the degree of belief or confidence that
a person has, given some state of knowledge, that the event will occur.  Bayesian Monte Carlo
combines a prior probability distribution and a likelihood function to yield a posterior distribution
(see Appendix E for examples).  Also called subjective view of probability, in contrast to the
frequentist view of probability.

Bootstrap4
5

A method of sampling actual data at random, with replacement, to derive an estimate of a population
parameter such as the arithmetic mean or the standard error of the mean.  The sample size of each
bootstrap sample is equal to the sample size of the original data set.  Both parametric and
nonparametric bootstrap methods have been developed.

Boxplot6 Graphical representation showing the center and spread of a distribution, sometimes with a display
of outliers (e.g., Figure 4-3).  This guidance uses boxplots to represent the following percentiles: 5th,
25th, 50th, 75th, and 95th. 

Cancer Slope Factor7
(CSF)8

A plausible upper-bound estimate of the probability of a response per unit dose of a chemical over
a lifetime.  The CSF is used to estimate an upper-bound probability of an individual developing cancer
as a result of a lifetime of exposure to a particular level of a potential carcinogen. 

C-term9 The concentration variable used in exposure assessment.  Concentration terms are expressed in units
applicable to the media of concern (e.g., mg/L for water, :g/m3 for air; mg/kg for soil and dust.

Central Limit10
Theorem11

12

If random samples of size n are repeatedly drawn from a population of any distribution, the
distribution of sample means converges to the normal distribution.  The approximation improves as
n becomes large. 

Central Tendency13
Exposure (CTE)14

15

A risk descriptor representing the average or typical individual in the population, usually considered
to be the arithmetic mean or median of the risk distribution.

Cleanup Level16 A chemical concentration chosen by the risk manager after considering both RGs and the nine
selection-of-remedy criteria of the NCP (U.S. EPA, 1990; 40CFR 300.430(e)(9)(iii)).  Also referred
to as Final Remediation Levels (U.S. EPA, 1991), chemical-specific cleanup levels are documented in
the Record of Decision (ROD).  A cleanup level may differ from a PRG because risk managers may
consider various uncertainties in the risk estimate, the technical feasibility of achieving the PRG, and
the nine criteria outlined in the NCP.

Coefficient of17
Variation18

19

Ratio of the standard deviation (SD) to the arithmetic mean (AM) (CV = SD/AM).  Dimensionless
measure of the spread of a distribution, therefore, useful for comparing PDFs for different random
variables.
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Confidence Interval1 An interval characterized by upper and/or lower estimates of an unknown quantity.  The confidence
level is the probability that the confidence interval contains the true value.  Confidence intervals can
be determined for any parameter of a probability distribution (e.g., arithmetic mean, 95th percentile).

Continuous Variable2
3

A random variable that can assume any value within an interval of real numbers (e.g., concentration).

Correlation4 A quantitative relationship between two or more input variables of a model (e.g., body weight,
inhalation rate, skin surface area).  In analyses involving time-dependent variables, a change in one
variable is accompanied by a change in another time-dependent, correlated variable.  Ignoring
correlations in PRA may lead to unrealistic combinations of values in a risk calculation.  Correlations
can also be defined as relationships between inputs and outputs.

Cumulative5
Distribution Function6
(CDF)7

A representation, generally a function or graph (e.g., Fig. 1-1) of the cumulative probability of
occurrence for a random independent variable.  The CDF is obtained from the PDF by integration in
the case of a continuous random variable and by summation for discrete random variables.  Each
value c of the function is the probability that a random observation x will be less than or equal to c.

Discrete Variable8
9

A random variable that can assume any value within a finite set of values (e.g., number of rainfall
events in one month) or at most a countably infinite set of values.

Empirical10
Distribution11

A distribution obtained from actual data and possibly smoothed with interpolation techniques.   Data
are not fit to a particular parametric distribution (e.g., normal, lognormal), but are described by the
percentile values.

Expert Judgment12 An inferential opinion of a specialist or group of specialists within an area of their
expertise.  Experts judgment may be based on an assessment of data, assumptions, criteria, models,
and parameters  in response to questions posed in the relevant area of expertise (see Chapter 3
[Section 3.8], and Appendix E).

Exposure Assessment13
14

The qualitative or quantitative estimate (or measurement) of the magnitude, frequency, duration, and
route of exposure.  A process that integrates information on chemical fate and transport,
environmental measurements, human behavior, and human physiology to estimate the average doses
of chemicals received by individual receptors.  For simplicity in this guidance, exposure encompasses
concepts of absorbed dose (i.e., uptake and bioavailability).

Exposure Point15
Concentration16

The contaminant concentration within an exposure unit to which receptors are exposed.  Estimates
of the EPC represent the concentration term used in exposure assessment.

Exposure Unit17 A geographic area where exposures occur to the receptor of concern during the time of interest.
Receptors may be human or ecological (e.g., plants, birds, fish, mammals).  For purposes of PRA,
probability distributions for exposure and toxicity variables apply  equally to all members of a
population at a given exposure unit.  Ecological exposure units often consider habitat and seasonality
factors that enhance exposure in a spatial area usually related to home ranges.
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Frequency1
Distribution2

A graph or plot  that shows the number of observations that occur within a given interval; usually
presented as a histogram showing the relative probabilities for each value.  It conveys the range of
values and the count (or proportion of the sample) that was observed across that range (see Figure 1-1,
Figure 4-1).

Geometric Mean3
(GM)4

5

The nth root of the product of n observations.  For lognormal distributions, the GM is equal to the
median and is less than the arithmetic mean (AM).  For normal distributions, all three measures of
central tendency (GM, AM, median) are equal.

Geostatistics6
7

Branch of statistics that focuses on data that have a spatial or geographic components (e.g., chemical
concentrations in soil or groundwater).

Goodness-of-Fit (GoF)8
Test9

A method for examining how well (or poorly) a sample of data can be described by a hypothesized
probability distribution for the population.  Generally involves an hypothesis test in which the
null hypothesis H0 is that a random variable X follows a specific probability distribution F0.  That
is, H0: F = F0 and Ha: F Ö F0.

Hypothesis Testing10 Statistical test of an assumption about a characteristic of a population.  The goal of the statistical
inference is to decide which of two complementary hypotheses is likely to be true.  

Indepedence11 Two events A and B are independent if knowing whether or not A occurs does not change the
probability that B occurs.  Two random variables X and Y are independent if the joint probability
distribution of X and Y factors into the product of the individual marginal probability distributions.
That is, f(X, Y) =  f(X) A f(Y).  Independence of X and Y is not synonymous with zero correlation (i.e.,
Cor(X, Y) = 0).  If X and Y are independent, then Cor(X, Y) = 0; however, the converse is not
necessarily true (Law and Kelton, 1991) - X and Y may be related in a nonlinear fashion but still
maintain Cor(X, Y) = 0.

Independent and12
Identically13
Distributed (IID)14

Random variables that are independent and have the same probability distribution of occurrence.

Individual-Level15
Effect16

An assessment endpoint that focuses on protecting a hypothetical or real individual in a population.
Individual-based models may account for unique exposure and toxicological response to chemicals
among individual receptors.

Iterative Truncation17 A method of calculating a PRG that involves developing an expression for the concentration term in
which high-end values are “truncated” to reduce the maximum concentration, and calculating risks
associated with the reduced concentration.  The method may be repeated with consecutively lower
truncation limits until risk is acceptable.  Iterative truncation methods avoid difficulties associated
with applying Monte Carlo analysis to a backcalculation.

Kriging18 A statistical interpolation method that selects the best linear unbiased estimate of the parameter in
question.  Often used as a geostatistical method of spatial statistics for predicting values at
unobserved locations based on data from the surrounding area.  Information on fate and transport of
chemicals within the area lacking data can be incorporated into kriged estimates.
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Kurtosis1 The measure of peakedness of a distribution.  A uniform distribution has a lower kurtosis than a
peaked distribution such as the normal and lognormal distribution.  Kurtosis is referred to as the 4th

central moment of a distribution.

Latin Hypercube2
Sampling (LHS)3

4

A variant of the Monte Carlo sampling method that ensures selection of equal numbers of values
from all segments of the distribution.  LHS divides the distribution into regions of equal sampling
coverage.  Hence, the values obtained will be forced to cover the entire distribution.  It is more efficient
than simple random sampling, i.e., it requires fewer iterations to generate the distribution sufficiently.

Likelihood Function5 A term from Bayesian statistics referring to a probability distribution that expresses the probability
of observing new information given that a particular belief is true.

Mean6
7

Arithmetic mean (AM) or average; the sum of all observations divided by the number of observations.
Referred to as the first central moment of a distribution.

Microexposure Event8
(MEE) Analysis9

10

A method of assessing risk based on an aggregate sum of a receptor's contact with a contaminated
medium.  MEE analysis simulates lifetime exposure as the sum of many short-term, or “micro”
exposures (see Appendix E).  MEE approaches can be used to explore uncertainty associated with the
model time step in PRA (e.g., use of a single value to represent a long-term average phenomenon,
seasonal patterns in exposure, or intra-individual variability).

Mode11
12

The most probable value of a random variable; a value with the largest probability or highest
probability density (or mass for discrete random variable).  The second parameter of a triangular
distribution. 

Moments of a13
Distribution14

Similar to a parameter; constant that represents a mathematical description of a random variable.
Central moments are defined with respect to the mean.  Mean, Variance , Skewness, and Kurtosis
are the first, second, third, and fourth central moments of a probability distribution.

Monte Carlo Analysis15
(MCA) or Simulation16

17

The process of repeatedly sampling from probability distributions to derive a distribution of outcomes
(i.e., risks or hazards).

Monte Carlo18
Sampling19

A method of simple random sampling used to obtain a distribution of values which may serve as an
input to a probabilistic risk analysis.  The probability of obtaining any given sample is similar to the
probability of a sample occurring within the distribution.  Hence, for a given sample size, simple
random sampling tends to produce values clustered around the mean of the distribution.

Multiple Regression20
Analysis21

A statistical met hod that describes the extent, direction, and strength of the relationship between
several (usually continuous) independent variables (e.g., exposure duration, ingestion rate) and a single
continuous dependent variable (e.g., risk).

Nonparametric22
Method23

A procedure for making statistical inferences without assuming that the population distribution has
any specific form such as normal or lognormal.  Sometimes referred to as distribution-free methods.
Common examples are the sign test, Spearman rank correlation, and the bootstrap-t approach.
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Numerical stability1 The property of a probabilistic simulation such that the a parameter value of the output distribution
(e.g., percentile, mean, variance, etc.) remains sufficiently constant for a specified number of Monte
Carlo iterations (see Chapter 3).  Numerical stability is a measure of the precision of the output from
a simulation; the tails of the distribution are typically less stable than the center.  Sufficient precision
is determined by professional judgment.  

One-dimensional2
Monte Carlo Analysis3
(1-D MCA)4

5

A method of simulating a distribution for an endpoint of concern as a function of probability
distributions that characterize variability and/or uncertainty.  PDFs used in 1-D MCA for human
health risks typically represent variability; PDFs for ecological risks typically represent uncertainty
in the central tendency.  It is good practice not to combine PDFs for variability and uncertainty in 1-D
MCA.

Parameter6 A constant that characterizes the probability distribution of a random variable.  For example, a
normal probability distribution may be defined by two parameters (e.g., AM and SD).  It is important
to distinguish between this definition, and a second popular, but less precise definition that leads to
confusion:  constants that define a mathematical equation or model.  For this guidance, the term
variable will be used to describe the second concept.  Body weight is an example of a variable
whereas a mean value of 70 kg is an example of a parameter for a distribution of body weight. 

Parametric7
Distribution8

9
10

A theoretical distribution defined by one or more parameters.  Examples are the normal distribution,
the lognormal distribution, the triangular distribution, and the beta distribution.

Percentile11
12

The pth percentile of the distribution is the value such that p percent of the observations fall at or
below it.  Also called quantiles or fractiles; percentiles are expressed as a percent, ranging from 0 to
100, quantiles or fractiles range from 0 to 1.

Point Estimate13
14

A quantity calculated from values in a sample to represent an unknown population parameter.  Point
estimates typically represent a descriptive statistic (e.g., arithmetic mean, 95th percentile).

Point Estimate Risk15
Assessment16

17

The familiar risk assessment methodology in which a single estimate of risk is calculated from a set
of point estimates.  The results provide point estimates of risk for the CTE and RME exposed
individuals.  Variability and uncertainty are discussed in a qualitative manner.

Population-Level18
effect19

An ecological term for an assessment endpoint that focuses on protecting a group of individuals within
a specified exposure unit and time that have similar exposures and toxicological responses to
chemicals.

Posterior20
Distribution21

A term from Bayesian statistics referring to a probability distribution that has been updated with new
information.

Power22
23

The probability that a test procedure detects a false null hypothesis; Power equals (1 - $), where $
is the probability of a Type II error (i.e., accepting H0 when Ha is true).   Power curves are a function
of a fixed significance level ("), sample size, and variability (SD).
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Preliminary1
Remediation Goal2
(PRG)3

A health-based chemical concentration in an environmental media associated with a particular exposure
scenario.  PRGs may be developed based on applicable or relevant and appropriate requirements
(ARARs), or exposure scenarios evaluated prior to or as a result of the baseline risk assessment.

Prior Distribution4 A Bayesian term referring to the hypothesized, expected, or calculated probability distribution for
an event prior to the collection of new information.

Probabilistic Risk5
Assessment (PRA)6

7

A risk assessment that uses probabilistic methods to derive a distribution of risk or hazard based on
multiple sets of values sampled for random variables.

Probability Density8
Function (PDF)9

A representation, generally a function, graph, or histogram (e.g., Fig. 3-1) of the probability of
occurrence of an unknown or variable quantity. The sum of the probabilities for discrete random
variables, and the integral for continuous random variables, (i.e., the area under the curve) is equal to
1.0.  PDFs can be used to display distributions used as input to a probabilistic assessment or the
distribution of risks that forms the output of the assessment.

Probability10
Distribution11

A table, graph, or formula that associates probabilities with the values taken by a random variable. 
Also called a probability model.

Random Variable12
13

A variable that may assume any of a set of values.  The likelihood of each value is described by a
probability distribution.

Reasonable14
Maximum Exposure15
(RME)16

17

The highest exposure that is reasonably expected to occur at a site (U.S. EPA, 1989; 1990).  The
intent of the RME is to estimate a conservative exposure case (i.e., well above the average case) that
is still within the range of possible exposures.

Reference Dose (RfD)18
19

An estimate of an exposure level for the human population, including sensitive subpopulations, that
is likely to be without an appreciable risk of deleterious effects during a lifetime.  Chronic RfDs are
specifically developed to be protective for a long-term exposure to a chemical (e.g., > 7 years) and
accounts for uncertainty spanning perhaps an order of magnitude or greater.

Remediation Action20
Level21

A concentration such that remediation of all concentrations above this level in an exposure unit will
result in the 95% UCL being reduced to a level that does not pose an unacceptable risk to an individual
experiencing random exposures.  The RAL will depend on the mean, variance, and sample size of
the concentrations within an exposure unit as well as considerations of short term effects of the
chemicals of concern. 

Remediation Goal22 A health-based chemical concentration in an environmental medium chosen by the risk manager as
appropriate for a likely land use scenario.

Risk Assessment23 The use of available information to make inferences about the health effects associated with exposure
of individuals or populations to hazardous materials or situations.  Components of risk assessment
include: hazard identification, dose-response assessment, exposure assessment, and risk
characterization (NAS, 1983).
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Risk1
Characterization2

A component of risk assessment that describes the nature and magnitude of risk, including
uncertainty.   In assessments of Superfund sites, it includes the summary and interpretation of
information gathered from previous steps in the site risk assessment (e.g., Data Evaluation, Exposure
Assessment, Toxicity Assessment), including the results of a probabilistic analysis.

Risk Descriptor3 A statistic (e.g., arithmetic mean, 95th percentile) that describes the risk to the assessment endpoint.

Risk Management4 The process by which regulatory decisions are made using all available risk assessment information
(including, but not limited to, the results of the PRA).  The NCP provides nine criteria for remedial
decisions (e.g., protection of human health, conformance with ARARs, etc.).  Risk managers may
include the Remedial Project Manager (RPM), section and branch chiefs, etc.

Scientific/5
Management6
Decision Point7
(SMDP)8

A point during the risk assessment process when the risk assessor communicates results of the
assessment at that stage to the risk manager.  At this point, the risk manager determines whether the
information is sufficient to arrive at a decision regarding risk management  strategies and/or if
additional information is needed to characterize risk.

Sensitivity Analysis9
10

Quantification of the effects of changes in model inputs on model outputs (Chapter 2 and Appendix
B).  Can be used to rank inputs based on their relative contribution to variance  in risk.  Local
sensitivity refers to nominal changes in inputs within a plausible range, whereas range sensitivity
refers to changes in inputs across the minimum and maximum values of the plausible range.
Definitions for Pearson and Spearman Rank order coefficients are given in Chapter 2.

Sensitivity Ratio11 Ratio of the change in model output per unit change in an input variable; also called elasticity.

Skewness12 The measure of asymmetry of a distribution.  Coefficients of skewness are zero for symmetric
distributions (e.g., normal), positive for right-skewed distributions (e.g., lognormal), and negative for
left-skewed distributions (e.g., specific forms of beta) . Referred to as the third central moment of a
distribution.

Step Function13 A mathematical function that remains constant within each of a series of adjacent intervals but
changes in value from one interval to the next.  Cumulative distribution functions for discrete
random variables are step functions. 

Stochastic14
Dominance15

Implies no intersection between the CDFs; distribution A stochastically dominates distribution B if,
for every percentile of the CDF, A > B.  This characteristic may not be apparent from the PDFs of
the distributions, which may overlap.

Stochastic Process16 A process involving random variables, and characterized by variability in space or time.

Time Step17 A variable in all exposure models that refers to the unit of time for which a random value is considered
representative of intra-individual variability  (e.g., average daily ingestion rates for an individual from
one year to the next).  A time step may be equal to an entire exposure duration (e.g., 30 years), or a
fraction of the exposure duration during which changes in input variables may be expected (e.g., one
year).  Time steps need not be identical for all exposure variables, and should address the most rapidly
changing variable in the risk equation. Time step can be an important consideration for MEE analysis.
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Toxicity Reference1
Value (TRV)2

3

A numerical expression of a chemical’s dose-response relationship that is used in ecological risk
assessment.

Truncation4 The process of setting lower and upper limits on the range of a distribution, in order to avoid
unrealistic values for exposure variables (e.g., > 100% bioavailability).  Most often used for
continuous, unbounded probability distributions (e.g., normal).  

Two-dimensional5
Monte Carlo Analysis6
(2-D MCA)7

An advanced modeling technique that uses two stages of random sampling, also called nested loops,
to distinguish between variability and uncertainty in exposure and toxicity variables.  The first stage,
often called the inner loop, involves a complete 1-D MCA simulation of variability in risk.  In the
second stage, often called the outer loop, parameters of the probability distributions are redefined to
reflect uncertainty.  These loops are repeated many times resulting in multiple risk distributions, from
which confidence intervals are calculated to represent uncertainty in the population distribution of
risk. 

Type I Errors8 False positive; the error made when the null hypothesis is rejected in favor of the alternative, when
in fact the null hypothesis is true.  

Type II Errors9 False negative; the error made when the null hypothesis is accepted when in fact the alternative
hypothesis is true.  

Uncertainty10 Lack of knowledge about specific variables, parameters , models, or other factors.  Examples include
limited data regarding the concentration of a contaminant in an environmental medium and lack of
information on local fish consumption practices.  Uncertainty may be reduced through further study.

Variability11 True heterogeneity, diversity, or a range that characterizes an exposure variable or response (e.g.,
differences in body weight).  Further study (e.g., increasing sample size, n) will not reduce variability,
but it can provide greater confidence in quantitative characterizations of variability. 

Variance12 Measure of the spread of a distribution, equal to the square of the standard deviation.  Variance is
referred to as the second central moment of a distribution.

Z-score13 The value of a normally distributed random variable that has been standardized to have a mean of
zero and a standard deviation of one by the transformation Z = (X - :)/F.  Statistical tables typically
give the area to the left of the z-score value.  For example, the area to the left of z = 1.645 is 0.95.  Z-
scores indicate the direction (+/-) and number of standard deviations away from the mean that a
particular datum lies assuming X is normally distributed.  Microsoft Excel’s NORMSDIST(z) function
gives the probability p such that p = Pr(Z # z), while the NORMSINV(p) function gives the z-score
zp associated with probability p such that  p = Pr(Z # zp).

14
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APPENDIX  B1

2

 ADVANCED CONCEPTS IN SENSITIVITY ANALYSIS3
4

As described in Chapter 2, there are several approaches to sensitivity analysis that may be useful in5
probabilistic risk assessment.  The basic concept of a sensitivity analysis is to understand how risk6
estimates are influenced by variability and uncertainty in the risk model.  While statistical software for7
Monte Carlo analysis provides convenient metrics for quantifying and ranking these sources, it is strongly8
recommended that risk assessors and risk managers develop an understanding of the underlying principles9
associated with these metrics.  This appendix provides additional information on the underlying principles10
of sensitivity analysis, although it is not a comprehensive summary and is not intended to substitute for the11
numerous statistical texts and journal articles on sensitivity analysis.  Section B.1 begins with a general12
framework for relating model output to model input.  Section B.2 explains the sensitivity ratio approach13
and highlights some of its limitations.  Section B.3 reviews some of the metrics reported by the14
commercial software that report results of sensitivity analysis following Monte Carlo simulations (e.g.,15
Crystal Ball®, @Risk®).16

17
18

B.1 RELATING THE CHANGE IN RISK TO THE CHANGE IN EXPOSURE VARIABLE X19
20

For purposes of discussion, let Y denote a model output (e.g., risk) and suppose that it depends on two21
input variables denoted by X1 and X2.  In general, a risk assessment model may use any number of inputs;22
however, for purposes of illustrating concepts, it is convenient to restrict this discussion to two variables. 23
The model relates the output Y to the two inputs through a function expressed as Y = f(X1, X2).  This24
function represents a surface in three dimensional space where the vertical axis represents Y and the two25
horizontal axes represent inputs X1 and X2 (Figure B-1a).  The form or “shape “ of this surface may be26
very simple, such as a plane (Figure B-1b), or it may be very complex with many “hills” and “valleys”27
depending on the defining function f(X1, X2) (Figure B-1a).  The way in which Y changes in response to a28
change in either X1 or X2 may, therefore, depend on where we are on this surface.  In local sensitivity29
analysis, the objective is to evaluate the sensitivity at some nominal point (X1*, X2*) such as the point30
defined by the mean or median of X1 and X2.  At that point, or at any other point for that matter, the31
sensitivity of the model output Y (Y*) to one of the inputs, Xi, is represented by the rate of change in Y per32
unit change in Xi.  This is the slope of the surface at that nominal point in the direction of Xi and is33
expressed as MY/MXi, the partial derivative of Y with respect to Xi.34

35
36
37
38
39

If the function f(X1, X2) is known explicitly, it may be possible to determine the partial derivatives40
analytically.  This is not a requirement, however, because an estimate can be obtained by incrementing Xi41
by a small amount, )Xi, while keeping the other inputs fixed and reevaluating the model output Y.  The42



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~DRAFT ~ DO NOT CITE OR QUOTE

  zAppend_b_ac.ts.wpd  ~ Dec. 30, 1999

Page B-2 

resulting change in Y divided by )Xi will approximate MY/MXi at the nominal point.  In practice, analytical1
solutions can be approximated using Monte Carlo techniques.2

3
One drawback to using the partial derivative to quantify the influence of Xi is that the partial4

derivative is influenced by the units of measurement of Xi.  For example, if the measurement scale for Xi5
is changed from grams to milligrams, the partial derivative MY/MXi will change by a factor of 1000. 6
Therefore, it is necessary to normalize the partial derivative  to remove the effects of units (see7
Appendix B.3).8

9
If the relationship between Y and all of the inputs is linear, then the response surface is a flat plane10

and each of the partial derivatives at each point, (Xi, Y), will remain constant regardless of where the point11
is in the surface (Figure B-1b).  In this case, it is a simple matter to determine the relative influence that12
the various inputs have on the model output. When the relationship is nonlinear, however, the situation is13
more complex because the influence of a particular input may vary depending on the value of that input.14
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Figure B-1a.  Hypothetical 3-D response surface for Y given two input variables: Y = f(X1, X2).  The sensitivity of Y with
respect to Xi is calculated as the slope at a specific point on the surface, or the partial derivative, MY/MXi.
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Figure B-1b.   Hypothetical 3-D response surface when Y is a linear function of two input variables: Y = f(X1, X2).  The slope
(i.e., the partial derivative, MY/MXi) is constant for any point (Xi, Y) on the surface in the direction of Xi.  In this case, MY/MX1

= 5 while MY/MX2 = 2.
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Equation B-1

B.2 CALCULATING SENSITIVITY RATIOS (BOTH LOCAL AND RANGE)1
2

Sensitivity ratios  can be used for sensitivity analysis in both point estimate and probabilistic risk3
assessment.  The approach is easy to understand and apply.  The ratio is equal to the percentage change4
in output (e.g., risk) divided by the percentage change in input for a specific input variable (see Appendix5
Equation. B-1).  Risk estimates are considered most sensitive to input variables that yield the highest6
ratios.  For simple exposure models in which the relationship between exposure and risk is linear, the ratio7
offers little information regarding the relative contributions of each input variable to the variance in risk. 8
However, for more complex, nonlinear models, the ratio can offer a useful screening tool to identify9
potentially influential input variables.10

11
Sensitivity ratios can generally be grouped into two categories.  For the local sensitivity ratio method,12

an input variable is varied by a small amount, usually ±5% of the nominal (default) point estimate, and the13
corresponding change in the model output is observed.  For the range sensitivity ratio method, an input14
variable is varied across the entire range (plausible minimum and maximum values).  If local and range15
sensitivity approaches yield different results, the risk assessor can conclude that different exposure16
variables are driving risk near the high-end (i.e., extreme tails of the risk distribution) than at the central17
tendency region.  Equation B-3 can be used to evaluate SR for different types of exposure models in18
which the intake equation is generally expressed as a simple algebraic combination of input variables.19

20
One difficulty with sensitivity ratio approach is that the method assumes that the input variables are21

independent.  If two exposure variables are correlated, holding the value for one fixed while allowing the22
value for the other to vary may produce misleading results, especially with the range sensitivity ratio23
approach.  For example, it may not be realistic to hold body weight fixed at a central tendency while24
allowing skin surface area to vary from the minimum to maximum values.  An improvement over the25
sensitivity ratio approach would be to allow correlated input variables to vary simultaneously.26

27
The general equation for calculating a Sensitivity Ratio (SR) for a variable is given by Equation. B-1.28

29
30
31
32
33
34
35
36

where,37
D1 = the value of the output variable using unchanged values of input38

variables39
D2 = the value of the output variable after changing the value of one40

input variable41
V1 = the default point estimate for an input variable42
V2 = the value of the input variable after changing V143



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~DRAFT ~ DO NOT CITE OR QUOTE

  zAppend_b_ac.ts.wpd  ~ Dec. 30, 1999

Page B-5 

Equation B-2

Equation B-3

1
Let ) equal the percentage change in the input variable, V1.  For SR calculations, ) may be either positive2
or negative (e.g., ±5% for local SR; ±100 for range SR), and the new value for the input variable (i.e., V2)3
is given by Equation. B-2.4

5
6
7
8
9

10
11

Therefore, the denominator in Equation B-1 reduces to ):12
13
14
15
16
17
18
19

and Equation B-1 reduces to Equation B-3: 20
21
22
23
24
25
26

Equation B-3 can be used to evaluate SR for different types of exposure models in which the intake27
equation is generally expressed as a simple algebraic combination of input variables (for examples, refer28
to Chapter 2, and RAGS Vol. 3 Part B).29

30
B.2.1 NORMALIZING THE PARTIAL DERIVATIVE31

32
Classical sensitivity analysis methods use estimates of the partial derivatives of the model output with33

respect to each variable (Tomovic, 1963).  For the purpose of evaluating the relative influence of the34
various input variables on the model output at a single point, the normalized partial derivative provides35
a useful index.36

37
If the input variables are all discrete and take on a small number of values, then it is possible to38

evaluate the influence of the various input variables at each of the points defined by considering all39
possible combinations of the inputs.  Then the influence can be evaluated for each input by computing40
normalized partial derivatives at each point.  This approach is limited to situations where the number of41
inputs as well as the number of possible values for each input is relatively small; otherwise, the number of42
combinations to be evaluated will be unmanageable.  Furthermore, when evaluating the influence at43
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different points on the input-output surface simultaneously, it is important to take into account the1
probability associated with each of those points.  For example, the fact that a particular input has a large2
influence on the model output at a particular point would be discounted if the probability associated with3
that particular point is very low. 4

5
A similar approach may be used to analyze inputs that are continuous variables if a few points6

representing the range of values are selected.  For example, low, medium (or nominal), and high values7
may be selected for each of the continuous input variables and then the relative influence of each of the8
input variables can be computed as in the case of discrete inputs.  One limitation of this approach,9
however, is that the continuous nature of the inputs makes it impossible to calculate an exact probability10
for each of the points.  Generally, in a PRA, many if not all of the inputs will be random variables11
described by probability distributions and it will be necessary to quantify the influence of each input, Xi,12
over the entire range of Xi. 13
 14

An estimate of the partial derivative can be obtained by incrementing Xi by a small amount, say )Xi15
while keeping the other inputs fixed and reevaluating the model output Y.  The resulting change in Y16
divided by )Xi will approximate MY/MXi at the nominal point. 17

18
19
20
21
22
23

As previously noted, one complication to using the partial derivative to quantify the influence of Xi is that24
the partial derivative is influenced by the units of measurement of Xi.  One way this is accomplished is to25
divide the partial derivative by Y* / Xi* (or equivalently multiply by Xi* / Y*).  An approximation of the26
normalized partial derivative is given below.27

28
29
30
31
32
33
34
35
36
37
38
39

Another approach is to divide by the ratio (FY/ FX), where FY  is the standard deviation of Y and FX is40
the standard deviation of X.  The latter method requires that the standard deviations be known, or that a41
suitable estimate can be obtained.42

43
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As previously noted, if the relationship between Y and all of the inputs is nonlinear, the influence of a1
particular input may vary depending on the value of that input.  One approach to this problem is to2
consider a range of values for the input and to examine the influence over that range.  If the input is3
considered to be a random variable following some specified probability distribution, then it may be4
desirable to look at the influence that the random input has on the model output across the distribution of5
input values.  This can be accomplished with a Monte Carlo approach. 6

7
8
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Simplifying Assumptions in 
Regression Analysis

C Y is a linear function of the unknown
coefficients ($i)

C successive values of Y are uncorrelated 
C variance of Y is constant for all values of

inputs (Xi)

B.3 REGRESSION ANALYSIS : R2, PEARSON R, AND PARTIAL CORRELATION COEFFICIENTS 1
2

In order to understand R2, it is necessary to first understand simple and multiple linear regression.  In3
regression analysis, we are interested in obtaining an equation that relates a dependent variable (Y) to one4
or more independent variables (X):5

6
7 Equation B-4
8

where $0 and $1 are regression coefficients, and g is called a random error.  Equation B-4 is the general9
equation for a simple linear regression, because we have only one Y and one X variable, and their10
relationship can be described by a line with intercept $0 and slope $1.  Note that linear regression refers11
to the linear relationship between parameters ($0, $1), not X and Y; thus the equation 12
is considered linear.   Multiple linear regression involves more than one X related to one Y 13

, while multivariate regression involves more than one Y to more than one X.14
15

The random error, g, represents the difference between an observed Y value (calculated from the16
observed input variables), and a Y value predicted by the regression line (í).  It is also called the residual17
(i.e., g = y - í).  The random error takes into account all unpredictable and unknown factors that are not18
included in the model.  Assumptions about g are that the random error has mean = 0 and constant19
variance, and is uncorrelated among observations.  One method of finding the best regression line is to20
minimize the residual sum of squares (i.e., least-squares method), also called the sum of squares due to21
error (SSE).22

23
In terms of sensitivity analysis, we are24

interested in how much of the variation in Y can25
be explained by the variation in X, and how much26
is unexplained (due to random error).  If a27
scatterplot of paired observations (x, y) shows28
that our regression line intersects all of the29
observations exactly, then all of the variation in Y30
is explained by X.  Another way of stating this is31
that the difference between the mean output ( )32
and an observed y (yi), or (yi - ), is equal to the33
difference between the mean output ( ) and a34
predicted y (íi), or (íi - ). 35

36
In general, the total deviation of yi from  is equal to the sum of the deviation due to the regression37

line plus the deviation due to random error:38
39
40
41

Equation B-5 

42
 43
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Equation B-6

Equation B-7

Equation B-8

Thus, the total sum of squares (SST) equals the sum of squares due to error (SSE) plus the sum of1
squares due to regression (SSR). 2

3
B.3.1 CALCULATIONS OF R2 AND ADJUSTED R24

5
The R2 term is a measure of how well the regression line explains the variation in Y, or:6

7
8
9

10
11
12
13
14

where R2 is called the coefficient of multiple determination and R is called the multiple correlation15
coefficient.  If R2 = 0.90 for a certain linear model, we could conclude that the input variables (X1,16
X2,...Xk) explain 90% of the variation in the output variable (Y).  R2 reduces to the coefficient of17
determination r2 for simple linear regression when one independent variable (X) is in the regression18
model.  The sample correlation coefficient, r, is a measure of the association between X and Y, and19
calculated by Equation. B-7. 20

21
22
23
24
25
26
27
28
29

In addition, r is an estimate of the unknown population parameter, D, defined by Equation. B-8:30

where FX and FY denote the population standard deviations of the random variables X and Y, and where31
FXY is called the covariance between X and Y.  The covariance FXY is a population parameter describing32
the average amount that two variables “covary”.  Thus, another way of thinking about a correlation33
coefficient (R) is that it reflects the ratio of the covariance between two variables divided by the product34
of their respective standard deviations; and the value always lies between -1 and +1.  @Risk and Crystal35
Ball provide both the R2 for the entire model, as well as the correlation coefficients for each input36
variable (or regressor).  The higher the value of Ri for Xi, the more sensitive the output variable is to that37
input variable. 38



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~DRAFT ~ DO NOT CITE OR QUOTE

  zAppend_b_ac.ts.wpd  ~ Dec. 30, 1999

Page B-10 

Equation B-9

Although the calculations are the same, there is a subtle conceptual difference between the1
coefficient of determination (r2) from regression, and the square of the correlation coefficient.  When2
evaluating two variables [X, Y], the key is whether X is interpreted as a “fixed” quantity (i.e., an3
explanatory variable), or a random variable just like Y.  In regression analysis, r2 measures how well the4
regression line explains the variation in Y given a particular value for X (Equation B-6).  Correlation5
requires that X be considered a random variable, typically having a bivariate normal distribution with Y6
(see Chapter 3). 7

8
One artifact of regression analysis is that R2 increases as you add more and more input variables to9

your model; however, the increased fit of the model due to one or more of the input variables may be10
insignificant.  Sometimes an adjusted R2 is calculated to take into account the number of input variables in11
the model (k) as well as the number of observations in the data set (n):12

13
14
15
16
17

While R2 gives the proportion of the total variation of Y that is explained,  takes into account the18
degrees of freedom (df), and gives the proportion of the total variance of Y that is explained (variance =19
variation /df); or stated simply,  is the R2 corrected for df .20

21
C If the relationship between an input variable and an output variable is strong, but nonlinear, the R222

statistic will be misleadingly low.23

24
C If the means of the sampling data are used rather than the individual observations for each variable,25

R2 will be misleadingly high.  This is because taking the mean of a sample reduces the fraction of the26
total variation due to random variation (see discussion of random error above).  This is an important27
consideration when trying to interpret the results of regression analyses that incorporate data28
averaged over different spatial scales (e.g., regression of PbB on soil lead concentrations taken at29
the city block level may give an inflated R2 value if the sampling data are averaged over a larger30
spatial scale, such as the census tract level).31

32

A multiple regression analysis can also be performed to estimate the regression coefficients (see33
Appendix B.3).  Each coefficient essentially represents an “average” value of the partial derivative34
across the entire distribution of the input.  The regression coefficient, like the partial derivative, depends35
on the units of measurement so, as in the case of the partial derivative, it must be normalized.  This can be36
accomplished by multiplying the regression coefficient by the ratio of estimated standard deviations sy/sx.37

38
A convenient way to carry out a sensitivity analysis is to perform a stepwise regression analysis. 39

Some statistical software packages (e.g., SAS, SPSS) offer a variety of different approaches for this,40
however, in general, they can be classified into two general categories: forward selection and backward41
elimination.  In the forward selection, the inputs are added to the model one by one in the order of their42
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Equation B-10

contribution.  In the backward elimination, all of the inputs are used in the model initially and then they are1
dropped one by one, eliminating the least important input at each step.  A true stepwise procedure is a2
variation on the forward selection approach where an input can drop out again once it has been selected3
into the model if at some point other inputs enter the model that account for the same information.4

5

B.3.2 RELATIVE PARTIAL SUM OF SQUARES (RPSS)6

7

The relative partial sum of squares (RPSS) measures the sensitivity of the model output to each8
of the input variables by partitioning the variance in the output attributable to each variable using multiple9
regression techniques (Rose et al., 1991).  The RPSS is presented as a percentage reflecting the10
proportion of influence a given variable has on risk.  The results of RPSS are intuitive and generally easy11
to understand.12

13
Briefly, the RPSS represents the percentage of the total sum of squares attributable to each of the14

variables.  To calculate RPSS for variable Vi, the difference between the regression sum of squares15
(RSS) for the full model and the regression sum of squares for the model with Vi missing (RSS-i) is16
divided by the total sum of squares (TSS) and expressed as a percentage:17

This procedure can be thought of as analogous to least squares linear regression but performed in the18
n-dimensional parameter space of the risk equation.  Since this approach depends on the adequacy of the19
linear regression model between the output variable (e.g., risk) and all the variables, an additional20
diagnostic is to check how close R2 is to 1.0.  For equations with more than three parameters (such as21
those used in Superfund risk assessments), the computational overhead of this process is large and22
requires specific computer programs.  The software program Crystal Ball does not perform this23
calculation, but it can be determined with most standard statistical software packages that perform24
multiple regression. @Risk performs a calculation similar to this called multivariate stepwise regression25
that yields correlation coefficients in lieu of percent contributions to output variance.26

27
B.3.3 SPEARMAN’S RANK CORRELATION COEFFICIENT (RHO)28

29
The validity of using indices such as regression coefficients, correlation coefficients, and partial30

correlation coefficients depends on the assumptions of the underlying linear model being met.  If there is31
any doubt that a data set satisfies the model assumptions, a nonparametric measure of correlation based32
on the rank orders of the inputs and associated outputs can be used.  The Spearman Rank correlation33
coefficient is a non-parametric statistic; it measures an association between variables that are either count34
data or data measured on an ordinal scale, as opposed to data measured on an interval or ratio scale. An35
example of an ordinal scale would be the ranking of sites based on their relative mean soil concentrations36
-- for example, if there are four categories of soil contaminant concentrations, sites with the highest37
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Equation B-11

concentrations may receive a rank of 1 while sites with lowest concentrations may receive a rank of 4. 1
Ordinal scales indicate relative positions in an ordered series, not “how much” of a difference exists2
between successive positions on a scale. 3

4
To calculate the Spearman rank correlation coefficient, assign a rank to each of the input variables5

(Xj) and output variables (Yk).  For each ranked pair (Xj, Yk), calculate the difference, d, between the6
ranks.  For example, if the first observation for variable X has a ranking of 5 (relative to all of the7
observations of X), and the corresponding value of Y has a ranking of 3 (relative to all of the observations8
of Y), the difference (d) is equal to 5 - 3 = 2.  Spearman rho (rs) is calculated as:9

10
11
12
13
14
15
16
17

Hence -1 # rs # 1.0, and rs = -1 describes a perfect indirect or negative relationship between ranks in the18
sense that if an X element increases, the corresponding Y element decreases.  Similarly, rs = 0 suggests19
that there is no relationship between X and Y.20

21
The Pearson product moment correlation coefficient is equal to the Spearman rank correlation22

coefficient when interval/ratio values of the measured observations (X, Y) are replaced with their23
respective ranks.24

25
Some statistical packages offer the correlation coefficient as an index of sensitivity, so it is important26

to identify if a parametric or nonparametric measure is being used. Crystal Ball and @Risk can be used27
to calculate the Spearman Rank Correlation.  Rank correlation coefficients shown in Crystal Ball and28
@Risk are calculated by the standard method provided in most statistics texts.  Crystal Ball also29
indicates that sensitivity can be determined as contribution to variance.  This is not the relative partial sum30
of squares techniques discussed above.  Instead, Crystal Ball calculates the contribution to the variance31
by squaring the rank correlation coefficients and normalizing them to 100%.  Many other commonly used32
commercial software packages will perform Spearman Rank Correlation.33
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APPENDIX C1

2

PROBABILITY DISTRIBUTIONS FOR PRA3
4

C.0 INTRODUCTION5
6

Once a determination has been made that variability or uncertainty will be characterized by a7
probability density function (PDF), a risk assessor has a wide range of options to select from.  Chapter 38
provides guidance on factors to consider in selecting and fitting PDFs to data.  The choice of distribution9
family and parameter estimates will depend on many factors.  Often, more than one PDF may adequately10
characterize variability, and judgment is required to define plausible bounds.  Uncertainty in exposure11
variables may be described based on a statistical measure of parameter uncertainty (e.g., upper and lower12
95% confidence limits), or an evaluation of parameter estimates from data sets describing surrogate13
populations.14

15
Table C-1 lists some of the probability distributions that may commonly be used in PRA.  This is not16

an exhaustive list, and the scientific literature contains numerous examples with alternative distributions. 17
Where practicable, a mechanistic basis is presented for the choice of the distribution.  For some18
distributions, such as beta, triangular, and uniform, a mechanistic basis is not offered because it is unlikely19
that a chemical or biological process will yield a random variable with that particular distribution. 20
Nevertheless, such distributions may be appropriate for use in PRA because they reflect the extent of21
information that is available to characterize a specific random variable.  Because of there flexible shapes,22
they may be useful models of variability for a variety of exposure variables. 23

24
Figure C-1 presents examples of PDFs and the corresponding CDFs for the following distributions: a)25

normal; b) lognormal; c) triangular; d) uniform; e) beta; f) Weibull; g) gamma; and h) exponential. For26
each distribution, one or more examples with different parameter estimates are given to demonstrate the27
flexibility in the shape of the PDF.   See Table 3-1 for a summary of the parameters and theoretical28
bounds that define the PDFs.29
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Table C-1 - Examples of Selected Probability Distributions for PRA1

Distribution2 Mechanistic Basis Example(s)

Beta3 Describes a continuous random variable
with finite upper and lower bounds.  This
distribution can take on very flexible
shapes, but generally does not have a
mechanistic basis.

Absorption fraction bounded by 0 and
100%; fraction of time an individual spends
indoors.

Binomial4 Describes a discrete random variable
produced by processes that (1) occur in a
fixed number n of repeated independent
“trials”,  (2) yield only one of two possible
outcomes (i.e., “success” or “failure”) at
each trial, and (3) have constant
probability p of “success”.  A beta
distribution is characterized by parameters
n, p, and x, representing the number of
trials, the probability of success of each
trial, and the number of successes,
respectively.

The number of animals with tumors (or
some other quantitative outcome) in a
chronic animal bioassay.

Exponential5 Results if instead of counting the number
of events in the Poisson process (below),
one measures the time (or distance)
between any two successive events.

The length of time between two radiation
counts; length of time between major storm
events; distance between impact points of
two artillery shells.

Gamma6 Similar to exponential except that time until
occurrence of the kth event in the Poisson
process is measured (rather than time
between successive events).  Reduces to
exponential when k = 1.

Time until kth radiation count; elapsed time
until kth major storm event. 

Lognormal7 Multiplication of a large number of random
variables, or equivalently adding the
logarithms of those numbers, will tend to
yield a distribution with a lognormal shape
(i.e., the logarithms of the products which
is the sum of the logarithms will be
normally distributed by the central limit
theorem).

Chemical concentrations in environmental
media; media contact rates; rates and flows
in both fate and transport models.  Because
the basic risk equation is multiplicative,
distributions of risk are generally lognormal. 
In practice, lognormal distributions often
provide good fits to data on toxicant
concentrations in a variety of media (Gilbert,
1987; Ott, 1990).
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Normal1 Addition of  independent random variables,
with no one variable contributing
substantially to the total variation of the
sum, will tend to yield a distribution with a
normal shape.  This result is established by
a basic theorem of probability theory (i.e.,
central limit theorem). 

The “Gaussian Plume Model” for the
dispersion of air pollutants is based on the
idea that, at a micro level, individual parcels
of air, or molecules of pollutants, are subject
to many random collisions from other
molecules that act together as if a large
number of random numbers were being
added/subtracted from an initial 3-
dimensional description of a position.

Poisson2 Observed when counting the frequency of
discrete events, where the events are
independent of one another, and randomly
distributed in space or time.  Approximates
the binomial distribution when n is large
and p is small.

The number of counts of radiation that
occur in a particular time interval; the
release of synaptic transmitter from nerve
cells; the number of artillery shells falling
within a fixed radius; the occurrence of
major storm events in a month; number of
leaks in average length of pipe.

Triangular3 The PDF is shaped like a triangle, with
parameters representing plausible bounds
and a most likely value (i.e., mode).  This
is a “rough” probability model that
generally describes a random variable
based on limited information rather than
mechanistic basis.

Variability in shower droplet diameter. 
Uncertainty in the mean air exchange rate in
a shower.

Uniform4 The PDF is shaped like a rectangle, with
parameters representing plausible bounds. 
This is a “rough” probability model that
generally describes a random variable
based on limited information rather than a
mechanistic basis. 

Variability in the air ventilation rate in a
house.

Weibull5 Originated in reliability and (product) life
testing as a model for time to failure or life
length of a component when the failure
rate changes with time.  A very flexible
model taking a wide range of shapes.  If
the failure rate is constant with time, the
Weibull reduces to the exponential
distribution.

Examples for exponential and gamma would
also be appropriate for Weibull.

6
7
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EQUATION D-1

GENERAL EQUATION FOR ESTIMATING

EXPOSURE TO A SITE CONTAMINANT

where,
I = daily intake
C = contaminant concentration

CR = contact rate (ingestion, inhalation,
dermal contact)

EF = exposure frequency
ED = exposure duration
BW = body weight
AT = averaging time

EQUATION D-2

CALCULATING THE 95% UCL FOR THE AM
OF A LOGNORMAL DISTRIBUTION

where,
= arithmetic mean of ln(x)

sy = standard deviation of ln(x)
H0.95 = test statistic for a one-sided 95%

confidence limit 
n = sample size

APPENDIX D (PART 1 OF 2)1

2

ESTIMATING UNCERTAINTY IN THE MEAN CONCENTRATION3
4
5

D.0 INTRODUCTION6
7

An important step in characterizing site-specific risks is the derivation of the concentration term,8
which should be used in the intake equation for Superfund exposure assessments (U.S. EPA, 1989).  The9
general equation used for calculating exposure is shown in Equation D-1.10

11
In a point estimate risk assessment, the12

concentration term is an estimate of the13
arithmetic mean concentration within the14
exposure unit for a contaminant based on a15
sample of observations made at the site. 16
Because of the uncertainty associated with17
estimating the true mean concentration at a site18
when data are limited, EPA recommends using19
the 95 percent upper confidence limit (95%20
UCL) of the arithmetic mean for this variable. 21
EPA’s guidance on calculating the concentration22
term describes the rationale and methodology for23
selecting this point estimate as an input variable24
(U.S. EPA, 1992).  Chapter 4 discusses how to25
develop a PDF for the concentration term for use26
in PRA in a manner that is consistent with the27
objective of estimating long-term risks.  This28
appendix provides additional details regarding29
two common approaches for characterizing30
uncertainty in the arithmetic mean concentration:31
(1) the Land method for lognormal distributions;32
and (2) the bootstrap resampling techniques.33

34
D.1 LAND METHOD FOR CALCULATING THE35

95% UCL FOR THE ARITHMETIC MEAN36
OF A LOGNORMAL PDF37

38
The Land method refers to the conventional39

method for calculating the 95% UCL for the mean40
concentration when the sample data are obtained41
from a lognormal distribution of concentrations. 42
EPA’s Supplemental Guidance for RAGS:43
Calculating the Concentration Term (U.S. EPA,44
1992) provides details and examples of45
applications of the Land method.  The method is46
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shown in Equation D-2.  In general, the Land method  is used to derive point estimates of uncertainty in1
the mean concentration based on the 95th percentile of the uncertainty distribution for the arithmetic2
mean.  3

4
5
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APPENDIX D (PART 2 OF 2)1

2

ESTIMATING UNCERTAINTY IN THE MEAN CONCENTRATION (CONTINUED)3
4
5
6

Figure D-1.  Probability distributions of arithmetic mean (AM) concentrations at three sites, at which7
uncertainty is represented as a function of sample size (n), sample AM, and sample standard deviation8
(SD).  For each site, it is assumed that contaminant concentration (X) follows a lognormal distribution with9
a sample AM and SD, expressed as [X ~ Log (AM, SD)].  Confidence limits for AM are calculated10
exactly using an MSDOS program provided by C.E. Land (1997) that employs the following algorithm11
(Land, 1971, 1975; U.S. EPA, 1992):12

13

14
15
16
17

18
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In addition to the point estimate calculation, the Land method can be used to calculate the1
complete distribution of uncertainty by varying alpha (") in the estimate of the H-statistic.  Figure D-12
presents  distributions for uncertainty that correspond with different lognormal distributions and sample3
sizes.  The complete distribution may be used in a 2-D MCA, whereas the point estimate of the 95%4
UCL may be used for the concentration term in either 1-D MCA or 2-D MCA.5

6

7
where and  are the mean and standard deviation of ln(X), and is the test statistic given an8
upper one-sided 100(1 - ")% confidence limit and sample size n.  Note that EPA (1997) demonstrates9
that use of the Land method will yield wider confidence limits than other methods (e.g., bootstrap).10

11
D.2 BOOTSTRAP METHOD12

13
Bootstrap refers to a method for estimating confidence intervals for a statistic by resampling a14

data set with replacement to form new data sets (called bootstrap samples) with the same sample size as15
the original data set.  A statistic of interest, such as the arithmetic mean, is calculated for each bootstrap16
sample.  The statistics generated from the bootstrap samples are referred to as replicates.  17

18
Many different bootstrap methods have19

been developed to estimate confidence intervals20
from bootstrap statistics (see highlight box below). 21
More detail is provided in EPA’s Lognormal22
Distribution in Environmental Applications23
(U.S. EPA, 1997) and the thorough evaluation by24
Hall (1988).  Bootstrap-t is presented in this25
appendix.  In general, confidence intervals are26
determined from the standard error of the27
replicates, or from the cumulative distribution function for the replicates.  Each bootstrap sample can be28
obtained using Monte Carlo resampling techniques.  The number of bootstrap samples, B, appropriate for29
developing reliable confidence limits depends on the statistic of interest and the acceptable error in the30
interval.  A minimum of B = 1000 is recommended by Efron and Tibshirani (1993).31

32
There are three main advantages of using bootstrap techniques to characterize uncertainty: (1)33

estimates the standard error of a statistic for which an equation of standard error is either extremely34
complex or non-existent; (2) estimates the standard error without fitting the sample to a parametric35
distribution; and (3) techniques are relatively easy to implement on a computer.  According to the central36
limit theorem, the arithmetic means obtained from independent, random samples drawn from the same37
population will be approximately normally distributed, regardless of the distribution of the sampled38
population, if the sample size is large (Snedecor and Cochran, 1989).   When the assumption of normally-39
distributed means is valid, confidence intervals (CIs) for the mean may be estimated using the t-statistic. 40
Note that the more familiar z-statistic is appropriate when the variance of the population is known.  In41

EXAMPLES OF BOOTSTRAP METHODS

• standard bootstrap
• bootstrap-t (also known as pivotal method
• percentile
• bias correction approach (BCa)
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practice, however, small sample sizes can yield inaccurate estimates of confidence intervals for1
moderately skewed distributions.  As n increases, the validity of assuming a normal distribution of means2
increases.  The size of n required for the assumption of normality to be valid depends on the variability3
and skewness of the data (U.S. EPA, 1997; Chen, 1995).4

5
Analytical solutions have been developed for estimating CIs for the mean for samples that are6

obtained from skewed distributions (e.g., Chen, 1995).  As discussed above, Land (1975) developed a7
method appropriate for lognormal distributions.8

9
10
11
12
13
14
15
16
17

where,18
19
20
21
22
23
24

= mean of bootstrap sample25
= mean of sample data26

tb = estimate of t for the bth bootstrap27
= estimated standard error of the mean for the bth bootstrap sample28

29
30
31
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Sample A Sample B Sample C
34.8 2.2 2.9
38.0 2.4 4.2
58.1 2.5 15.0
71.1 44.5 18.2
83.8 50.0 24.6

102.2 112.3 29.1
102.2 152.7 270.8
109.8 1786.5 2280.6
109.9 1849.4 250000.0
192.4 10917.8 500000.0

EXAMPLE D-1.  COMPARISONS OF METHODS FOR QUANTIFYING CONFIDENCE LIMITS FOR THE1
ARITHMETIC MEAN OF RIGHT-SKEWED DISTRIBUTIONS.2

3
The following example illustrates the effect that skewed distributions have on estimates of confidence4
intervals for the arithmetic mean.  Assume Tables D-1 and D-2 summarize the contaminant5
concentrations (ppm) that were detected in surface sediments at three different sites.  6

7
Table D-1.  Sample Data8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Sample Statistics29
30

Summary statistics for three hypothetical samples are provided in Table D-2.  Each sample has the same31
number of measurements (n = 10) and can be described by a probability distribution that is skewed to the32
right (i.e., positive coefficient of skewness).  Sample A has no extreme values in the tail, resulting in a low33
coefficient of skewness (g = 1.1).  Sample B has a single extreme value (10917.8), which tends to inflate34
the arithmetic mean, standard deviation, and coefficient of skewness.  Similarly, sample C has two35
measurements with extremely high concentrations (i.e., two orders of magnitude greater than other36
measurements), yielding the highest sample mean and standard deviation.  Although the coefficient of37
skewness for sample C is lower than that of sample B (i.e., 2.3 vs. 2.9), the distribution percentile38
corresponding to the mean is the highest (i.e., 81st percentile).39

40
Confidence Intervals for the Mean41

42
Two approaches have been used to estimate confidence intervals for the mean of positively skewed43
distributions.  First, one may assume that the sample data are described by a continuous probability44
distribution, such as the lognormal distribution (see Chapter 3 for guidance on selecting and fitting45
distributions).  U.S. EPA (1992) provides guidance on estimating the confidence interval (CI) for the46
mean of a lognormal distribution using the Land method (Land, 1971; 1975; 1997).  In general, CI is47
sensitive to the sample size (n) and variance (s2); CI tends to increase with decreasing sample size and48

Table D-2.  Sample Statistics

Statistic Sample A Sample B Sample C

n 10 10 10

90 1492 75265

s 46 3393 168608

GSD1 1.612 3.853 3.818

g 2 1.1 2.9 2.3

percentile3 48.3th 75.7th 81.0st

1 Geometric standard deviation, assuming sample data

can be fit to a lognormal distribution.

2 g = coefficient of skewness.

3 Distribution percentile that corresponds to .
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increasing variance.  A second approach, which encompasses a group of techniques referred to as1
bootstrap methods, requires no assumption regarding the probability distribution for the sample.  U.S. EPA2
(1997) provides guidance on estimating CI using various bootstrap methods.  As with the Land method,3
CIs estimated using bootstrap methods are sensitive to the sample size (n) and variance (s2) of the4
sample.5

6
Table D-3 summarizes the 90% confidence intervals for the arithmetic mean of the three samples using7
the four (4) different bootstrap methods and the Land method.  Detailed descriptions of the bootstrap8
approaches are provided in U.S. EPA (1997) and Efron and Tibshirani (1993).  In addition, results of the9
central limit theorem (CLT) are also provided.  The CLT states that as the sample size increases, the10
distribution of  approaches a normal distribution, no matter what the underlying population distribution11
may be.12

13
Table D-3.  90% Confidence Intervals for the Mean.114

Estimation15
Method16

Sample A 
(  = 90)

Sample B 
(  = 1492)

Sample C 
(  = 75265)

Lower Upper Lower Upper Lower Upper

1.  Central Limit17
Theorem (CLT)18

64 117 - 475 3459 - 22,474 173,003

2.  Standard Bootstrap219 65 115 - 373 3357 - 17,780 168,309

3.  Percentile Bootstrap220 69 114 218 3488 270 175,033

4.  BCa Bootstrap221 71 118 405 4752 25,237 225,034

5.  Bootstrap-t222 69 121 245 8883 7554 17.0 x 106

6.  Land323 108 3245 2738 53.9 x 109 6406 94.1 x 109

1 90% CI estimated from 1-sided lower and upper 95% confidence limits.24
2 Bootstrap estimates are based on B = 10,000 estimates of .25
3 Estimated using Land’s MS DOS program (Land, 1997) for exact CI for mean of lognormal26
distributions.27

28
For sample A, which is only moderately right-skewed, the CLT and four bootstrap estimates yield29
approximately the same 90% CI, all of which contain the sample mean (90) and the population mean used30
to generate the original sample (i.e., a lognormal distribution with : = 100 and F = 50).  Land’s method31
yields a wider CI that does not contain the sample mean.32

33
For sample B, which contains one extreme value and the highest coefficient of skew (g = 2.9), the 90%34
CI is wider for each method.  Again, the CLT and bootstrap methods each contain the sample mean,35
while the Land method yields a 95% lower confidence limit (LCL) that exceeds the sample mean (i.e.,36
2738 > 1492).  Note that the CLT and standard bootstrap methods also yield a 95% LCL less than 0,37
which is not uncommon for skewed distributions.  Of the four bootstrap methods, the bootstrap-t method38
tends to yield the widest CI.39

40
For sample C, which contains two extreme values and a high coefficient of skew, the 90% CI is wider41
still.  Each method yields a 95% UCL that is more than two times greater than the sample mean.  Both42



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE

zAppend_d_part2.ts.wpd ~ December 30, 1999

Page D-6 

the bootstrap-t and Land methods are especially sensitive to extreme values, yielding 95% UCL values1
that are three and six orders of magnitude greater than the sample mean, respectively.2

3
These examples illustrate how, for small sample sizes, estimates of confidence intervals for the mean are4
sensitive to extreme values in right-skewed distributions.  This is not unique to the bootstrap approaches.5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
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APPENDIX E (PART 1 OF 2)1

2

ADVANCED MODELING APPROACHES FOR 3

CHARACTERIZING VARIABILITY AND UNCERTAINTY4
5

E.0 INTRODUCTION6
7

This appendix briefly describes the following advanced modeling approaches that can be used in PRA8
to  characterize variability and uncertainty: 2-dimensional (2-D) MCA, microexposure event analysis9
(MEE), geospatial statistics, and Bayesian analysis.  The application of many of these approaches will10
require access to expertise in specialized areas of statistics and, in some cases, specialized or even11
custom-designed computer software.  The intent here is to introduce some of the basic concepts and12
terminology, as well as to provide references where the reader can find more exhaustive coverage of13
these topics. 14

15
E.1 EXPRESSING VARIABILITY AND UNCERTAINTY SIMULTANEOUSLY16

17
A Monte Carlo analysis that characterizes either uncertainty or variability in each input variable (see18

Example in Chapter 1) can be described as a one-dimensional analysis (1-D MCA).   A two-dimensional19
Monte Carlo analysis (2-D MCA) is a term used to describe a model that simulates both uncertainty and20
variability in one or more input variables.  All probability distributions that are used to describe variability21
in a PRA model have a certain degree of associated uncertainty.  For example, suppose variability in soil22
concentration (ppm) is estimated using a normal PDF defined by a mean (:soil = 5) and standard deviation23
(Fsoil = 1), and subjectively truncated (min, max) at (0, 50).  Uncertainty in the parameter estimates can24
be represented in a PRA model by assuming both parameters are also random variables.  To illustrate this25
concept, assume normal PDFs for uncertainty can be specified for both parameters.  Uncertainty in the26
mean is described by the normal PDF with parameters (:mean= 5, Fmean = 0.5); similarly, uncertainty in the27
standard deviation is described by the normal PDF with parameters (:SD = 1, FSD = 0.5).  Model28
variables are represented in this manner when there is a compelling reason to believe that a unique29
probability distribution does not adequately describe one’s knowledge of each variable in the model.  A30
variable described in this way is called a second order random variable.  Figure E-1 (Panel A) shows a31
collection of n = 20 cumulative probability distributions (CDFs), each curve representing a unique set of32
(mean, SD) parameter estimates for the normal PDF for variability.  Panel B shows the 90% confidence33
interval1 based on 2500 simulated CDFs.  The 95% lower and upper bounds correspond to the34
distribution of 5th percentiles and 95th percentiles, respectively (i.e., CDF for 2500 5th percentiles and CDF35
for 2500 95th percentiles).  The 90% CI for the 50th percentile is (3.4, 6.7).36

37
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Figure E-1.  Panel A shows a family of 20 CDFs for a hypothetical random variable, Y (e.g.,
concentration in units of ppm), characterized by a normal PDF where both the mean and SD are also
random variables representing uncertainty in the parameter estimates: Mean~ Normal(5, 0.5), SD~
Normal(1, 0.5).  Each CDF represents a single simulation of n = 2500 iterations using a unique set of
parameters.  For example, CDF1 represents N~(4.0, 1.3) while CDF2 represents N~(5.4, 0.3).  Panel
B shows the “90% credible interval” for the CDF based on 2500 simulations, each simulation using
n = 2500 iterations (i.e., a 2-D MCA with 2500 outer loop iterations and 2500 inner loop iterations).
Lower, median, and upper bounds represent the simulated 5th, 50th, and 95th percentiles, respectively.
The 90% confidence interval for the estimate of the 50th percentile is: {3.4, 6.7}.

1
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DEFINITIONS FOR APPENDIX E

Bayesian statistics - A specialized branch of statistics that views the probability of an event occurring
as the degree of belief or confidence in that occurrence.

Geospatial statistics - A specialized branch of statistics that explicitly takes into account the
georeferenced context of data and the information (i.e., attributes) it contains.

Frequentist - A term referring to classical statistics in which the probability of an event occurring is
defined as the frequency of occurrence measured in an observed series of repeated trials.

Image Analysis - A technique in geostatistics used to restore a degraded image or interpret images that
have been contaminated by noise or possibly some nonlinear transformation.

Kriging - A geostatistical method of spatial statistics for predicting values at unobserved locations.
Likelihood Function - A Bayesian term referring to a probability distribution expressing the probability

of observing a piece of new information given that a particular prior belief is true.
Location tag - The spatial coordinates of a sampling location (e.g., longitude, latitude).
Microexposure Event Analysis (MEE) - An approach to modeling exposure in which long-term exposure

of an individual is simulated as the sum of separate short-term exposure events.
Point Pattern Analysis - A technique in geostatistics of restricting the analysis to location information,

ignoring attribute information; addresses two location problems: 1) describing points according
to spacing, and 2) describing points according to density.

Posterior Distribution - A Bayesian term referring to a probability distribution that has been updated with
new information.

Prior distribution - A Bayesian term referring to the hypothesized, expected, or calculated probability
distribution for an event prior to the collection of new information.

Spatial Autocorrelation - The tendency of data from locations that are relatively close together to be
geographically correlated.

Thiessen (Voronoi) polygon analysis - A method of spatial statistics in which an area is subdivided into
subregions, or polygons, in order to predict values at unobserved locations. 

Time Step - A modeling term used to describe the time interval within which variable values do not
change.

Two-Dimensional (2-D) Monte Carlo Analysis (MCA) - Separate representation of variability and
uncertainty in an MCA, usually accomplished using nested computation loops.

In the example shown in Figure E-1, the mean and standard deviation for soil concentration were allowed1
to vary independently.  Thus, a distribution could be defined by a combination of a low mean and a high2
standard deviation or a high mean and low standard deviation, or any other combination in between.  The3
assumption of independence of variable parameters may not be valid in all cases.  It may be unreasonable4
to assume that a high mean soil concentration would occur with a low standard deviation.  An alternative5
assumption would be that the standard deviation of the mean is a constant proportion of the mean (i.e., a6
constant coefficient of variation).   Correlations between parameters should be considered in the design of7
the PRA.  One approach that is especially useful for characterizing relationships between the slope and8
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Equation E-1

   Equation E-2

Standard Time-Averaging

Microexposure Event Modeling

C = Concentration; i = exposure event; j = year of life
IR = Intake Rate
EF = Exposure Frequency
ED = Exposure Duration
BW = Body Weight
AT = Averaging Time

intercept of a simple linear regression is to specify the bivariate normal distribution for the parameter1
estimates. 2

3
4

E.2.1 TWO-DIMENSIONAL MONTE CARLO ANALYSIS (2-D MCA)5
6

Two-dimensional Monte Carlo analysis (2-D MCA) is an approach for computing risk (or hazard)7
when combining distributions that represent variability and uncertainty.  In 2-D MCA, distributions8
representing variability and uncertainty are sampled using nested computational loops (Figure E-2).  The9
inner loop simulates variability by repeatedly sampling values for each variable from their defined10
probability distributions.  With each circuit of the outer loop, new parameter values for each variable are11
selected, and the inner loop sampling is repeated.  The result is a collection of inner loop simulations, one12
for each parameter value selected.  If the inner loop samples 5000 times, and the outer loop samples 100013
times, then each variable is sampled 5,000,000 times and 1000 simulated probability distributions of risk14
are generated from the PRA model.  These probability distributions can be analyzed to estimate the15
distributions for specific risk estimates.  For example, confidence limits on the estimate of specific risk16
percentiles can be simulated using 2-D MCA (Figure E-3). 17

18
19

E.3 MICROEXPOSURE EVENT ANALYSIS20
21

The standard intake equation22
generally used in Superfund site risk23
assessments expresses the time-24
averaged intake as the products of the25
time-averaged, body mass adjusted,26
exposure concentration, medium intake27
rate and exposure duration (Equation E-28
1).  If the risk assessment is directed at29
assessing life-time risk to humans, the30
averaging time used in Equation E-131
would generally be 70 years (i.e.,32
estimated average human lifetime), and33
the calculated chemical intake would34
generally represent the life-time average35
daily intake (LADD).  Where36
information is available to characterize37
variability on a smaller time scale than38
life-time, an alternative expression of39
intake that accommodates such40
variability may be desirable. 41

42
43
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Figure E-2.  Diagram showing of a 2-D Monte Carlo model in which the variability and
uncertainty dimensions are computed in nested loops.  In this example, values for exposure
variables in the inner loop represent monthly averages. 

1
2
3
4
5
6
7



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE 
zAppend_e_part1.ac.ts.wpd ~ December 30, 1999

Page E-6 

0

5

10

15

20

A
M

5t
h 

%
ile

25
th

 %
ile

50
th

 %
ile

75
th

 %
ile

90
th

 %
ile

95
th

 %
ile

Variability Statistics

H
az

ar
d 

Q
uo

tie
nt

   95th %ile

   75th %ile

   50th %ile

   25th %ile

   5th %ile
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Time Step Issues: How many random values? What averaging time for intake?

Concentrations in various environmental media can be expected to vary over time.   For example,1
wind erosion may change chemical concentrations in surface soil.  Leaching may change concentrations2
in both subsurface soil and groundwater.  The change in the concentration term is most readily apparent3
when considering harvesting anglers.  If an angler consumes a large amount of fish from a single location4
(e.g., a specific lake, pond or river), then the average chemical concentration in the fish consumed by that5
angler can be expected to be similar to the average of the chemical concentration of fish in the population. 6
 However, if an angler consumes fish only occasionally, or harvests fish from different locations, there7
will be considerably more uncertainty in the concentration term.  In addition, a harvesting angler may8
consume varying amounts of fish over the period of the exposure duration due to changing tastes, changes9
in the fish population size or other factors.10

11
Daily activity patterns, food intake, soil ingestion and other behavioral factors are measured in a time12

period of less than a year.  The extrapolation of these short term results to the chronic exposure situation13
is a source of uncertainty.  Exposure events are real but unknowable whereas data regarding the nature14
and magnitude of these events is known but its application to a real world situation is uncertain. 15
Microexposure event analysis (MEE) attempts to reduce this uncertainty (Price et al., 1996). MEE16
modeling provides an alternative to the standard time-averaging approach represented by Equation E-1. 17
In the MEE approach, long term intake is viewed as the sum of individual exposure events (Equation E-2). 18
Implementing the MEE approach in a PRA requires dividing the exposure duration into short epochs, or19
time steps, within which the20
values assigned to exposure21
variables remain constant, but are22
allowed to vary from one time-23
step to the next.  In a PRA24
model, exposure variables are25
adjusted at each time step by26
selecting values from the27
probability distributions28
representing each variable29
(Figure E-4).  Discussion of the30
implementation of MEE analysis31
to risk assessment and its merits32
and limits can be found in Buck33
et al. (1997), Price et al. (1996),34
Slob (1996), and Wallace et al.35
(1994).36

37
In MEE modeling, the time38

step becomes an important variable, with associated uncertainty.   The time step should be selected based39
on information available to describe how exposures change over time.  For example, a model of a moving40
plume of solvents in groundwater might suggest that chemical concentrations in a given location are41
dropping by between 16 and  25 percent quarterly.  Several rounds of sampling may support this42
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Figure E-4.  Flowchart showing general approach for Microexposure Event (MEE)
analysis.

prediction.  This rapid decline in concentrations suggests that an appropriate time step might be one1
quarter (i.e., three months).2

3
On the other hand, where risk is being assessed for metals, dioxin or PAHs in soil, the concentrations4

might be expected to change much more slowly, if at all, and the basis of the time step might be the5
increase in age and corresponding changes in behavior of the receptor.  The time step may be global; that6
is, one time step may apply to all variables in the model.  In this case, the same number of random values7
would be selected for each exposure variable in a Monte Carlo simulation. A more complex model may8
use different time steps for different variables, requiring some probability distributions to be sampled more9
often than others.  The selection of a value for a time step implies that the value represents the average10
value for that variable during the time step.11

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
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33
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37
38
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40
41
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Two important issues related to time-step need to be considered in implementing the MEE approach1
in PRA models.  The first is the relationship between the length of the time step and the number of times2
random values are generated from a defined probability distribution.  As the time step decreases, more3
time steps are needed to simulate exposures over a specified duration.  For example, given a time step of4
one year and an exposure duration of 30 years, each random variable will be sampled 30 times (once per5
year); for a time step of one month and an exposure duration of 30 years, each random variable would be6
sampled 360 times (i.e., 12 months/year x 30 years).   The Central Limit Theorem indicates that as n7
increases, the distribution of sample means is approximately normal, and the standard deviation of the8
sample distribution is inversely proportional to the square root of n.  Thus a highly skewed input9
distribution (e.g., lognormal) may tend to become less skewed with increasing n (Figure E-5).  A biased10
estimate of the RME risk in a PRA model may result if an inappropriately small or large time step is used11
in the model.  This emphasizes the importance of having an empirical basis for selecting the time step and12
of exploring the time step as a variable in a sensitivity analysis of the model.13

14
The second issue related to the time step concerns temporal correlations.  Is it reasonable to assume15

that random values selected for consecutive time steps are completely independent?  For example,16
consider body weight.  The body weights of an individual measured at different times would be expected17
to show positive temporal autocorrelation; that is, body weight is likely to be similar (but not constant)18
from one time step to the next.  For example, if an individual weighs 60 kg during one month, it is unlikely19
that they will weigh 80 kg the next month.  If this scenario is accepted, then body weight should not be20
allowed to vary independently from one monthly time step to the next in the model.  At shorter time steps,21
temporal correlation becomes more likely as a result of temporal autocorrelation.  For example, one can 22
expect a higher correlation between body weights on an individual measured on two successive days23
(one-day time step) than between weights measured at the midpoint of two successive years. Approaches24
to simulating temporal correlations in probabilistic models might include fixing an individual within a25
percentile range of a distribution (e.g., randomly assigned quartile) or using randomly assigned fluctuations26
(e.g., BW t = BWt-1 ± x).27
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Figure E-5.  Hypothetical example showing the effect of model time step on the probability
distribution for soil and dust ingestion rate in children over a 1-year period.  Number of samples
(n) needed to simulate exposures:  Annual (1), Quarterly (4), Monthly (12).

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE 
zAppend_e_part1.ac.ts.wpd ~ December 30, 1999

Page E-11 

EXHIBIT E-1

POSITIVE SPATIAL AUTOCORRELATION

• locations with a high value of Y tend to be
surrounded by nearby high values of Y

• locations with a medium value of Y tend to be
surrounded by nearby medium values of Y

•  locations with a low value of Y tend to be
surrounded by nearby low values of Y

EXHIBIT E-2

EXAMPLES OF RISK ASSESSMENT ISSUES 

LINKED TO GEOSPATIAL STATISTICS

• Sampling tends to disproportionately represent
“hot spots” (i.e., a relatively large portion of a
data set with a small sample size (n) tends to
be concentrated at “hot spots”).

• The upper confidence limit (UCL) for the
arithmetic mean exposure concentration (e.g.,
chemical concentrations in soil) depends on
the sample size.

• Additional sampling may be needed, especially
to better define the spatial patterns or the
extent of contamination.

• There is uncertainty about locations not
sampled at a site, as well as uncertainty
regarding the representativeness of
neighboring samples in nearby exposure units.

E.4 GEOSPATIAL STATISTICS1
2

Spatial statistics is a specialized branch of3
statistics, falling under the heading of multivariate4
statistics, that explicitly takes into account the5
georeferenced or locational tagged context of6
data.  All environmental samples collected at7
Superfund sites have such geocoding.  By8
acknowledging the geography of site chemicals,9
information about the spatial distribution of10
contamination can be incorporated into an11
exposure assessment. This can lead to a more12
accurate estimate of  the confidence limits for13
the arithmetic mean concentration.  Geospatial14
statistics quantifies the spatial autocorrelation of sample measurements and allows for the exploration of15
the spatial distribution of exposure and risk using techniques of map generalization.  By  recording16
locational tags for each sample, information about17
spatial patterns within an exposure unit can be18
exploited to estimate both pre- and post-19
remediation exposure and risk.  20

21
Several important risk assessment issues are22

closely linked to geospatial statistics, as described23
in Exhibit E-2.  Geospatial statistics comprises:24

25
• spatial autoregression, 26
• geostatistics,27
• point pattern analysis, and 28
• image analysis29

30
The first three of these subjects can contribute to31
spatial statistical support of site risk assessments. 32
The key concept linking all three is spatial33
autocorrelation, which refers to covariation among34
samples for a single chemical, or the tendency of35
data from locations that are relatively close36
together to be geographically correlated.  By37
analogy, classical statistics treats soil samples as38
though they are balls, each having a battery of39
attributes, that can be placed into an urn for40
statistical analysis;  geospatial statistics treats soil41
samples as though they are clusters of grapes,42
with the branchy stems representing locational43
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Figure E-6.  Effect of an outlier on measured correlation:  r = 0.956 with outlier (n = 100),
whereas r = 0.086 excluding outlier (n = 99 clustered points).

tags.  Concentrations located on the same “branch” will be more strongly correlated than concentrations1
on different branches.2

3
E.4.1 CORRELATION AND SPATIAL AUTOCORRELATION4

5
Several simple bivariate statistical approaches (also see Chapter 3) may be used to introduce the6

concept of spatial autocorrelation.  Consider two variables, X and Y.  For positive correlation there is a7
tendency for high values of X to be paired with the high values of Y; medium values of X to be with the8
medium values of Y, and low values of X with the low values of Y.  The tendency is in the opposite9
direction for negative correlation; high values of X tend to be paired with low values of Y, and so on. 10
Spatial autocorrelation, which virtually always is positive, directly parallels these definitions, but is written11
in terms of a single variable as shown in Exhibit E-1.12

13
Just as the bivariate relationship between X and Y can be portrayed by a scatterplot (Y versus X), the14

spatial autocorrelation relationship can be portrayed with a Moran scatterplot (sum or average of nearby15
values of Y versus Y); this is most effective when Y has been converted to z-scores.  As shown in16
Figure E-6, scatterplots can be used to illustrate some important issues related to sample size.  17

18
19
20
21
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EXHIBIT E-3

EFFECT OF SPATIAL

AUTOCORRELATION (r) ON EFFECTIVE

SAMPLE SIZE (n*)

r n*

0.000 625

0.050 514

0.539   64

0.957     3

1.000     1

If no soil samples were collected at a site (n = 0), there is no information about the chemical1
concentrations in soil, and any guess may be considered an estimate.  However, if the chemical2
concentration of a single sample (n = 1) is measured, some information is obtained that partly restricts this3
estimate.  As each additional independent sample is taken, more information is obtained, and the4
restriction on the estimate becomes more binding.  If the same location is selected repeatedly for5
sampling, then the repeated measures, which may vary through time, will tend to be highly positively6
correlated; part of the information obtained from each sample is the same, and should not be counted7
more than once in estimating the site-wide soil concentration.  Similarly, if immediately adjacent locations8
are sampled, the measures will often tend to be highly positively correlated (spatial autocorrelation). 9
Once the first sample is taken, each additional sample provides only a fractional increment of new10
information about the site in its entirety.  11

12
E.4.2 EFFECTIVE SAMPLE SIZE (N*) AND DEGREES OF FREEDOM13

14
Repeated measures can result in data clustering, which can be illustrated in a scatter diagram. 15

Because two points determine a straight line, if (n-1) points cluster together on a scatter diagram while a16
single additional point occurs far away from this cluster (i.e., an outlier), then the resulting bivariate17
correlation will be very high (see Figure E-6).  This situation alludes to the notion of effective sample size18
(n*):  the n* is no longer equal to the number of observations (n), but rather is dramatically reduced by19
the presence of inter-observational correlation.  For the example shown in Figure E-6, n* is slightly20
greater than 2 rather than 100 (i.e., n).21

22
Spatial autocorrelation plays an analogous role in23

georeferenced data.  If a sampling network is arranged as24
a 25-by-25 square grid (one sample point per grid cell),25
and superimposed over a large site so that a very large26
distance separates nearby sample locations, then27
essentially zero spatial autocorrelation should be present28
in the geographic distribution of the concentrations of any29
given chemical.  Concentrations will appear to be30
haphazard across the site, rendering the effective sample31
size as n*=625.  If the distance between nearby locations32
on the sampling mesh is decreased so that the spatial33
correlation is only r=0.050, then the effective sample size34
decreases to n*=514.  The effect of reducing the inter-35
sample distance on spatial autocorrelation and n* for a36
25-by-25 grid is shown in Exhibit E-3.  If r increases to 1,37
then n* reduces to 1.  Therefore, obtaining a measure of38
latent spatial autocorrelation is essential to estimating n*;39
this in turn is critical to determining confidence limits for40
estimates of mean concentrations, which are sensitive to41
sample size.  The upper confidence limit (UCL) for the42
mean will be biased only when very high levels of spatial autocorrelation are present; this is because the43
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Equation E-3

Equation E-4

Student- t statistic used to estimate the UCL (assuming a normal distribution) changes very little as the1
degrees of freedom (related to sample size) increases above 10; part of the difference between n and n*2
is offset by an inflation of the variance.3

4
The concept of effective degrees of freedom is important in exposure assessment because high5

positive spatial autocorrelation can bias the estimate of the UCL concentration if geospatial statistics are6
not considered.  This should be of particular concern when specific locations at a site are intensively7
sampled (e.g., suspected “hot spots”), and other locations are relatively undersampled.   Accordingly, the8
design of the sampling network itself can be evaluated from the perspective of geospatial statistics in9
order to ascertain the quality of sample information.  The ideal sampling network should provide10
geographic representativeness, should be roughly uniformly distributed over a site, and is best11
implemented as a stratified random sampling design; that is, the site is partitioned into geographic strata12
(e.g., exposure units), and then a random sampling of points is selected within each strata.  In practice,13
sample designs may need to focus on objectives that are in conflict with the above ideals.  For example,14
intense sampling of suspected “hotspots” may be necessary at some sites, at the expense of a more15
representative spatial coverage of the site.   In such cases, several statistical techniques are available for16
assessing the statistical benefit (in terms of reducing uncertainty) of additional sampling at undersampled17
locations.  18

19
E.4.3 ASSESSMENT OF ADDITIONAL SITE SAMPLING20

21
Thiessen Polygons.  In addition to calculating nearest neighbor statistics, the adequacy of a22

sampling network can be assessed by Voronoi (i.e., Thiessen polygon) surface partitioning, a popular23
approach used in mapping intra-site geographic distributions.  This procedures divides a site into a24
mutually exclusive set of polygons, each polygon containing a single measured concentration.  Each25
polygon has the unique property that any location within the polygon is closer to the polygon’s sample26
location than to any other sample point (Clifford et al., 1995).  The concentration measured at the sample27
point in the polygon is assigned to the entire area of the polygon.  The intensity of sample points on a28
surface can be measured by Equation E-3 mean inverse polygon areas:29

where SI is a measure of the sampling intensity, Ai is the area of the ith polygon, and m is the number of30
interior polygons (those not along the edge of the site); m < n.  The variance of the sampling intensity can31
be expressed by Equation E-4:32

33
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Equation E-5

Equation E-6

If the sampling network is uniform (i.e., polygon areas are equal), the variance will be essentially zero. 1
The variance will increase as the network deviates from uniform.  This measure can be used to assess2
whether or not additional samples will improve the spatial coverage.  3

4
L Sampling locations that would yield a dramatic reduction in the variance should be given priority5

for future sampling efforts.6
7

Thiessen polygons can be used to develop area-weighted estimates of the arithmetic mean8
concentration (Csoil,w) according to the following general equation:9

where Ci is the concentration in the ith polygon, Ai is the area of the ith polygon in the exposure unit, and10
AT is the total area of the exposure unit.  The weight for each measurement is essentially the ratio of the11
area of each polygon to the total area of the site.  Clifford et al. (1995) applied this approach to an12
ecological risk assessment of the burrowing owl with the following simplifying assumptions: habitat range13
is circular, size of exposure unit is constant (75 ha) although location may vary, and organisms spend14
equal time in all portions of their habitat.  Given these assumptions, a nonparametric Bootstrap method can15
be used to determine the approximate 95% UCL for the mean concentration (see Appendix D).  Using16
Monte Carlo analysis, Csoil,w can be estimated for different locations of the exposure unit according to17
Equation E-3, and confidence limits can be generated from the multiple Bootstrap estimates.  Burmaster18
and Thompson (1997) demonstrate a similar approach in which the exposure unit (with constant area but19
random rectangular dimensions) is overlayed on the Theissen polygon surface and 95% UCL for the20
mean is calculated from the Bootstrap sample.21

22
Linear Regression.  Another diagnostic is found in the linear regression literature.  The locational23

tag coordinates (e.g., longitude, latitude) can be converted to z-scores (say zu and zv) for the following24
calculation:  25

where Y is a measure of the sampling network, ruv is the correlation between the coordinate axes, and n26
is the number of samples.  Any sampling location (zu, zv) in which Y > 9/n may be considered too isolated27
in the sampling network.  Additional sampling locations should be positioned closer to it to improve the28
overall coverage of the sampling network.29

30
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E.4.4 MAP GENERALIZATION1
2

Another important application of geospatial statistics to risk assessment is that of map generalization,3
which draws on the subjects of geostatistics and spatial autoregression.  Techniques developed for both4
topics exploit spatial autocorrelation in order to produce a map.  5

6
Kriging and Semivariograms.  Geostatistics employs kriging, which yields statistical guesses at7

values of a chemical at unsampled locations based on information obtained from sampled locations. 8
Kriging assumes that the underlying geographic distribution is continuous, evaluates spatial autocorrelation9
in terms of distance separating sample points, and employs a scatter diagram similar to the Moran scatter10
plot to portray this relationship (i.e., the semivariogram plot:  half the squared difference between11
measured concentrations for two sampled locations versus distance separating these two locations).  The12
best-fit line to this scatter of points is described by one of about a dozen equations (semivariogram13
models).  14

15
Thiessen Polygons and Spatial Autoregression.  Spatial autoregression assumes a discretized16

surface, uses the Thiessen polygon surface partitioning to construct a Moran scatter plot, and can be used17
to estimate values at selected points with a regression-type equation.  Theoretically, the exponential18
semivariogram model relates to the conditional autoregressive model, and the Bessel function19
semivariogram model relates to the simultaneous autoregressive model; in practice, though, the spherical20
semivariogram model often provides the best description of a semivariogram plot.  Regardless of which21
approach is taken to map generalization, one relevant contribution of these two subjects is the following22
observation:23

24
L Including positive spatial autocorrelation results in more accurate variance estimates; this in turn25

yields more accurate estimates of the 95% UCL for the mean concentration.26
27

E.4.5 IMPLEMENTATION ISSUES RELATED TO GEOREFERENCED DATA28
29

Estimation of parameters, for either geostatistical or spatial autoregressive models, cannot be30
achieved with ordinary least squares (OLS) techniques; nonlinear least squares must be used.  While OLS31
provides unbiased regression coefficients, these estimates are not necessarily sufficient (i.e., they do not32
summarize all of the information in a sample pertaining to the population), efficient (i.e., the standard33
errors most often are incorrect), and consistent (i.e., the asymptotic sampling distribution concentration34
will not be at the parameter value).  In other words, OLS essentially uses the wrong degrees of freedom35
in its calculations, as described in Section E.3.2.  Two additional complications of georeferenced data that36
do not appear in other types of data are (1) spatial autocorrelation might be directional (i.e., directional37
dependency), and (2) variance might be nonconstant over space as well as over the magnitude of the38
dependent variable, Y (e.g., chemical concentration).  Several statistical approaches, which are beyond39
the scope of this guidance, are available for analyzing these potential sources of bias in the exposure40
concentration estimates (Isaaks and Srivastava, 1989; Cressie, 1991; Griffith, 1993). 41

42
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E.5 EXPERT JUDGMENT AND BAYESIAN ANALYSIS1
2

Up to this point in RAGS III, risk has been characterized as having a population probability distribution3
with parameters (e.g., mean, standard deviation) that can, theoretically, be estimated from observation.  4
In theory, risk estimates could be derived by repeatedly measuring risk in subsets of the population of5
interest (e.g., repeated measurements of site-related cancer risk) .  The unstated expectation, or goal, is6
that the PRA model will accurately simulate this real risk distribution.  This approach derives from a7
classical view of probability.  The classical or frequentist view defines the probability of an event as the8
frequency with which it occurs in a long sequence of similar trials.  From the frequentist perspective, the9
probability of having a flipped coin land heads-up is given by the frequency distribution for heads-up10
derived from repeated similar trials of coin flips.  Unfortunately, for real world decisions such as those11
informed by Superfund risk assessments, it is unclear what a representative population of similar trials12
would be. 13

14
Bayesian View of Probability.  A Bayesian perspective on probability allows distributions to be15

constructed based on the judgement of an expert in the field.  The subjectivist or Bayesian view is that the16
probability of an event occurring is the degree of belief a person has in the occurrence.   Probabilities can17
be assessed by experts using scientific knowledge, judgment, data, past experience, and intuition. 18
Different people may assign different probabilities to an event, and a single individual may assign different19
probabilities to the same event when considered at different times.  The consequence is that probabilities20
become conditional and the conditions must be explicitly stated (Sivia, 1996; Howson and Urbach, 1989;21
Ott, 1995; Morgan and Henrion, 1990).  These conditional probabilities can, of course, be updated with22
new information.  23

24
Using the coin flip analogy above, a Bayesian perspective might be that, based on experience with25

coins, assuming that most coins are fair, and that a fair coin would be expected to land  heads-up half the26
time, the expected probability of the tossed coin landing heads-up is 0.5.  If the outcome of repeated trials27
was different from the expected, the Bayesian approach would be to update the probability based on the28
new data.  In the coin flip example, both the Bayesian and frequentist approaches will arrive at the same29
conclusions, because the outcome is amenable to rigorous experimentation.  Where the two approaches30
can be expected to differ is in the assignment of probabilities to events that can not be rigorously31
measured; for example, the probability of a site-related cancer risk, or the probability of a child ingesting a32
specific amount of soil. 33

34
The subjective judgment of experts is, therefore, an important tool in the Bayesian approach to risk35

assessment.  For example, the input distributions for a probabilistic risk assessment can be based upon the36
judgement of one or more experts who rely upon estimates from the literature, data from experimental37
studies, and any other information they consider relevant. Even when formal elicitations of expert opinion38
are not done, the final selection of the form and parameters of the input distributions usually involves some39
subjective judgement by the analyst.  There is a rich literature about the protocol for conducting expert40
elicitations and using the results to support decisions (Morgan and Henrion, 1990).  Elicitation of expert41
judgement has been used to obtain distributions for use in risk assessments (Morgan and Henrion, 1990;42
EPA, 1997; Hora, 1992) and in developing air quality standards (EPA, 1982).43
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EXHIBIT E-4

COMPONENTS OF BAYES THEOREM IN PRA

• input probability distributions for exposure (or
toxicity) based on available data or expert
judgement

• prior probability distribution for risk based on input
probability distributions (output from PRA)

• new data

• likelihood function, expressing the probability of
observing the new data conditional on prior risk

In addition to providing input1
distributions for probabilistic risk2
assessments, Bayesian analysis allows the3
current state of knowledge, expressed as a4
probability distribution, to be formally5
combined with new data to reach an6
updated information state.  The distribution7
expressing the current knowledge is the8
prior distribution and may be the output of9
a PRA (Figure E-7).  An appropriate10
likelihood function for the data must also11
be formulated.  The likelihood function is12
based upon an understanding of the data13
gathering process and is used to determine14
the probability of observing a new set of15
data given that a particular risk estimate is16
true.17

18
Once the prior distribution is determined, the new data values are collected, and the likelihood function19

is assumed, Bayes theorem (Exhibit E-4) provides a systematic procedure for updating the probabilistic20
assessment of risk.  The updated information state is called the posterior distribution and reflects the21
reduction in uncertainty arising from the new information.  22
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Equation E-7

Figure E-7.  Conceptual model of Bayesian Monte Carlo Analysis. A PRA simulation yields a prior
distribution of risk based on probability distributions for input variables.  Given new data for an input
variable, and a likelihood function for risk, Bayes Theorem (Eq. E-7) can be used to generate a posterior
distribution of risk.  The expression P(D/R) refers to a conditional probability, “the probability of D,
given R”.  Conditional probabilities can be thought of as relative frequencies, where R is the information
given, and D is the event being computed when a particular value of R occurs.

D = new data
Ri = ith risk prediction associated with new data
Rj = jth risk estimate simulated from PRA model 
N = number of risk estimates from the PRA model

1
2
3
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For example, suppose a model is available to relate soil TCDD concentrations at a site with serum1
concentrations of TCDD.  A probability distribution of soil concentrations is created based upon expert2
judgement and a limited amount of site specific data.  Using the model, the soil concentrations can be3
associated with a distribution of serum TCDD concentrations (P(R), the prior distribution).  New site-4
specific data (D) are subsequently collected on serum TCDD concentrations in order to reduce5
uncertainty in the risk estimate.  Assume that it is known that serum TCDD concentrations generally6
follow a lognormal distribution and that the best estimate of the parameters of this distribution come from7
the prior distribution on serum TCDD.  This creates the likelihood function (P(D|R)).  Using Bayes8
Theorem, the new data are used to form a revised distribution of serum TCDD.  This is the posterior9
distribution (P(R|D)). 10

11
Bayesian Monte Carlo Analysis.  In the past, the use of Bayesian analysis was limited by the12

degree of mathematical complexity involved.  Using Monte Carlo analysis to carry out the PRA, rather13
than mathematical equations to describe the distributions, allows the calculations to be done much more14
easily.  This variation on traditional Bayesian methods is called Bayesian Monte Carlo analysis15
(Patwardan and Small, 1992; Dakins et al., 1996).  In the TCDD example discussed above and illustrated16
in Figure E-7, the required calculations are carried out for each of the N iterations of the Monte Carlo17
analysis (i and j go from 1 to N).18

19
Bayesian Monte Carlo analysis is appropriate in several situations.  If a model has  been created and20

a distribution developed using  probabilistic risk assessment, new information may be incorporated without21
the need to repeat the entire analysis.  This information could be on one of the uncertain parameters of22
the model or on the model output variable.  Similarly, a generalized risk model with generic parameter23
distributions may be used for a Superfund risk assessment with the model predictions fine-tuned using24
data from a particular site of interest.  Finally, after a distribution is developed, the amount of uncertainty25
that exists may be too large for the risk manager to make a decision.  In this case, the risk manager26
should seek out new information that will help refine the analysis and decrease the uncertainty. 27

28
Bayesian Monte Carlo analysis can also be combined with techniques from decision analysis to help29

determine the type and quantity of data that should be collected to reduce uncertainty.   Decision analysis30
is a technique used to help organize and structure the decision maker’s thought process and identify a best31
strategy for action.  To determine the appropriate action, one defines the range of possible decisions,32
evaluates the expected value of the utility or loss function associated with each decision, and selects the33
decision that maximizes the expected utility or minimizes the expected loss.  34

35
L Decision analysis provides a quantitative approach for evaluating the benefits of including36

a realistic assessment of uncertainty and the subsequent benefits of reducing this37
uncertainty.  38

39
Value of Information.  Value of information (VOI) analysis involves estimating the value that new40

information can have to a risk manager before that information is actually obtained (Clemen, 1996). It’s a41
measure of the importance of uncertainty in terms of the expected improvement in a risk management42
decision that might come from better information.  Examples of VOI quantities are the expected value of43
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including uncertainty (EVIU), the expected value of sample information (EVSI), the expected value of1
perfect information (EVPI).  Calculation of these quantities can be done using mathematical methods,2
numerical integration (Finkel and Evans, 1987), or Monte Carlo techniques (Dakins, 1999)3

4
Value of information calculations require the specification of either a utility or a loss function.  A loss5

function states the losses associated with making different types of decision errors including both direct6
monetary costs and losses associated with other consequences.  Loss functions take various forms7
depending on the risk management situation (Morgan and Henrion, 1990). 8

9
Expected Value of Including Uncertainty.  The expected value of including uncertainty, EVIU, is a10

measure of the value of carrying out a probabilistic risk assessment.  It’s the difference between the11
expected loss of a decision based on a deterministic risk assessment and the expected loss of the decision12
that considers uncertainty (Figure E-8).  If uncertainty in a risk assessment has been estimated using13
Monte Carlo techniques and a loss function has been specified, the EVIU can be easily calculated.  First,14
the management decision from the deterministic assessment is determined.  The loss from making this15
decision is calculated for each iteration of the Monte Carlo, each time assuming that the risk estimate16
from that iteration is true.  The expected loss is the average of these individual losses.  The expected loss17
for the PRA is determined by calculating the expected loss for a full range of management decisions and18
selecting the decision with the lowest expected loss.  The EVIU is calculated by subtracting the loss19
associated with the PRA from that associated with the deterministic assessment.  20

21
Expected Value of Sample Information.  The expected value of sample information is the difference22

between the expected loss of the decision based on the PRA and the expected loss of the decision from23
an improved information state.  As such, the EVSI is a measure of the value that may result from the24
collection and use of new information (Figure E-8).  Calculation of the EVSI involves a technique called25
preposterior analysis and is somewhat more complicated.26

27
This type of analysis is termed “preposterior” because it involves the possible posterior distributions28

resulting from potential samples that have not yet been taken.  For each replication from the Monte Carlo29
simulation, the predicted value from the model is used to randomly generate a set of K data points.  Each30
set of data points is then used to calculate the posterior probabilities for the N Monte Carlo simulated31
values.  These posterior probabilities are then used to obtain the optimal answer to the management32
question at this new level of uncertainty by selecting the decision that minimizes the expected loss over all33
possible management decisions.34

35
This procedure is repeated for each of the N replications of the Monte Carlo analysis resulting in36

N posterior distributions, N management decisions, and N associated expected losses.  Because each of37
these outcomes are equally weighted, the expected loss associated with the state of uncertainty expected38
to exist after the data collection program is carried out is simply the average of the N expected losses. 39
The EVSI is the difference between the expected loss based on the results of the PRA and the expected40
loss from the updated information state. 41

42
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Expected Value of Perfect Information.  The expected value of perfect information, EVPI, is1
the difference between the expected loss of the decision based on the results of the PRA and the2
expected loss of the optimal management decision if all uncertainty were eliminated.  In actual application,3
no research plan or data collection program can completely eliminate uncertainty, only reduce it.  The4
EVPI is an upper bound for the expected value of efforts to reduce uncertainty and so provides the5
ultimate bound on what should be spent on research and data collection efforts. 6

7
8

Figure E-8.  Expected Loss associated with various types of information incorporated into a generic9
uncertainty analysis.10

11
12

When a probabilistic risk assessment has been carried out using Monte Carlo techniques, the13
expected loss associated with perfect information is calculated by determining the expected loss for each14
iteration of the Monte Carlo, assuming that the correct management decision, if that iteration were true, is15
made.  As always, the expected loss is the average of these losses, and the EVPI is calculated by16
subtraction.17

18
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Nominal Decision
Ignoring Uncertainty

Decision Under 
Uncertainty

Decision with Additional
 Imperfect Information

Decision with 
Perfect Information

EVIU

EVSI

EVPI

Expected Loss EVIU = Expected Value of Including Uncertainty
EVSI = Expected Value of Sample Information
EVPI = Expected Value of Perfect Information

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

Uses of Value of Information in Risk Assessment.  Value of information analysis has many26
benefits for risk managers.  First, VOI analysis makes the losses associated with decision errors explicit,27
balances competing probabilities and costs, and helps identify the decision alternative that minimizes the28
expected loss.  VOI analysis can help a decision maker overcome a fear of uncertainty by developing a29
method to handle it.  If the losses associated with making a poor decision are unclear, small uncertainties30
can take on major importance.  Conversely, if the losses associated with different risk management31
decisions are similar, little additional effort should be expended to continue to consider the alternatives. 32
 33

34
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APPENDIX E (PART 2 OF 2)1

2

ADVANCED MODELING APPROACHES FOR 3

CHARACTERIZING VARIABILITY AND UNCERTAINTY (CONTINUED) 4
5
6

In addition, VOI analysis helps prioritize spending on research.  It provides insights into how resources7
could be spent to achieve the most cost-effective reduction in uncertainty by identifying which sources of8
uncertainty should be reduced, what type of data should be obtained, and how much data is needed. 9
Finally, VOI analysis may help decision makers explain the rationale for their decisions to the public and10
help the public understand the multiple objectives considered in managing risks.11

12
Expected Loss  is usually greatest when uncertainty in risk estimates is ignored.  For example, by13

quantifying uncertainty in risk (e.g., 2-D MCA, Bayesian Monte Carlo analysis) a risk manager may14
determine that the cleanup level associated with the 90th percentile of the risk distribution (rather than the15
95th percentile) is adequately protective.  Quantifying uncertainty may also result in lower expected loss16
when more soil remediation is required due to the losses associated with possible under-remediation.  The17
expected loss  may be further reduced by collecting additional soil samples, which would presumably18
reduce uncertainty in estimates of mean exposure point concentrations.  The expected loss  may be19
minimized by obtaining "perfect" information (i.e., no uncertainty);  however, as shown in the figure,20
expected value of perfect information spans a wide range of expected loss  because the value associated21
with reducing uncertainty may be tempered by costs associated with additional sampling and analysis.   In22
practice, risk assessors consider this issue when deciding to obtain additional samples for site23
characterization.24

25
The decision to obtain additional information in order to reduce uncertainty should be made on a26

site-specific basis, taking into account the potential impact that reducing uncertainty may have on the27
overall remedial decision.  Important questions to consider include: 1)  Are the risk estimates sufficiently28
sensitive to an exposure variable that collecting further data will reduce uncertainty?  and 2) Are the29
confidence limits on the 95th  percentile risk estimate sufficiently wide that reducing uncertainty may alter30
the cleanup goal?  An example of decision framework applicable to PRA is presented in Figure E-9.  The31
framework has three tiers.  Tier 1 includes the point estimate approach and an assessment of the need for32
PRA.  In Tier 2, the expected value of including uncertainty in the assessment (EVIU) is calculated and,33
if warranted, a PRA is conducted.  In Tier 3, the value of additional information is assessed and Bayes34
Theorem would be used to incorporate the new information and update probability distributions.35

36
Limitations of These Techniques.  Figure E-9 illustrates situations where Bayesian analysis and37

value of information quantities may not be helpful.  For example, if deterministic risk assessment is38
selected as the appropriate method, these techniques do not apply.  Additionally, if site specific data are39
available that are comprehensive and representative of the population of interest, the results of the40
Bayesian Monte Carlo analysis will be the same as using the site specific data directly.  To be41



RAGS 3A ~ Process For Conducting Probabilistic Risk Assessment ~ DRAFT ~ DO NOT CITE OR QUOTE 
zAppend_e_part2.ts.wpd ~ December 30, 1999

Page E-2 

representative and comprehensive, the data set must be sufficiently large, randomly selected, and1
represent the full range of variability that exists in the population (e.g., temporal, spatial, inter-individual).2
However, data sets are rarely perfect, often too small, suffer from relatively high sampling and/or3
measurement errors, or don’t represent the entire population variability over time, space, age, gender, or4
other important variables.  If the data cannot be assumed to describe the population distribution5
sufficiently well, then probabilistic risk assessment will help to more fully develop the entire range of the6
population distribution and the Bayesian Monte Carlo analysis will act to refine the model estimates.7

8
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Figure  E-9.  Conceptual model for evaluating the expected value of including uncertainty in a Bayesian
Monte Carlo Analysis.

1
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In order to carry out VOI calculations, a loss function must be assumed.  Definition of the loss1
function may be complex due to multiple decision goals and/or multiple decision makers and may be2
difficult to capture in an equation.  Finally, for Bayesian analysis and the calculation of the EVSI to be3
helpful, one or more sources of new data must exist.  In addition, some information must be available4
about this data since a likelihood function describing its probability distribution must be assumed.  5

6
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